Resource-Aware Process Model Similarity Matching

  • Michaela Baumann
  • Michael Heinrich Baumann
  • Stefan Schönig
  • Stefan Jablonski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8954)


As business process models are widely used and essential for most organizations, the problem of redundantly modeled processes rises. This can happen when a process is modeled by different modelers or when organizations merge. In order to cope with this issue, typically process model similarity matching methods are used. Thereby, pure textual matching algorithms operating on single activities are often not suitable. One alternative is to include further information like data and resources and to check for M:N-matchings. The work at hand describes how to use resource information to match process models, even if they are modeled on different levels of granularity. The approach can be used for both human and non-human resources. Furthermore, the differences between intra- and inter-organizational matchings are pointed out.


Process modeling Process model similarity Resource-aware process matching M:N-matching 



The presented work is developed and used in the project “Kompetenzzentrum für praktisches Prozess- und Qualitätsmanagement”, which is funded by “Europäischer Fonds für regionale Entwicklung (EFRE)”.

The work of Michael Heinrich Baumann is supported by a scholarship of “Hanns-Seidel-Stiftung (HSS)” which is funded by “Bundesministerium für Bildung und Forschung (BMBF)”.


  1. 1.
    van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Process equivalence: comparing two process models based on observed behavior. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Baumann, M.H., Baumann, M., Schönig, S., Jablonski, S.: Towards multi-perspective process model similarity matching. In: Barjis, J., Pergl, R. (eds.) EOMAS 2014. LNBIP, vol. 191, pp. 21–37. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Castelo Branco, M., Troya, J., Czarnecki, K., Küster, J., Völzer, H.: Matching business process workflows across abstraction levels. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 626–641. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Dijkman, R.: A classification of differences between similar businessprocesses. In: 11th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2007, p. 37 (2007)Google Scholar
  5. 5.
    Dijkman, R., Dumas, M., García-Bañuelos, L., Käärik, R.: Aligning business process models. In: IEEE International Enterprise Distributed Object Computing Conference, EDOC 2009, pp. 45–53 (2009)Google Scholar
  6. 6.
    Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  7. 7.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between business process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Dumas, M., García-Bañuelos, L., Dijkman, R.M.: Similarity search of business process models. IEEE Data Eng. Bull. 32(3), 23–28 (2009)Google Scholar
  10. 10.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business process models. In: Proceedings of the Fourth Asia-Pacific Conference on Comceptual Modelling, APCCM 2007, vol. 67, pp. 71–80. Australian Computer Society, Inc. (2007)Google Scholar
  11. 11.
    Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall of process model matching by improved activity label matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37(5), 443–459 (2012)CrossRefGoogle Scholar
  14. 14.
    yWeidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Weske, M.: Business process management: concepts, languages, architectures. Springer Science & Business Media (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michaela Baumann
    • 1
  • Michael Heinrich Baumann
    • 1
  • Stefan Schönig
    • 1
  • Stefan Jablonski
    • 1
  1. 1.University of BayreuthBayreuthGermany

Personalised recommendations