Advertisement

Supporting Rule-Based Process Mining by User-Guided Discovery of Resource-Aware Frequent Patterns

  • Stefan Schönig
  • Florian Gillitzer
  • Michael Zeising
  • Stefan Jablonski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8954)

Abstract

Agile processes depend on human resources, decisions and expert knowledge and are especially versatile and comprise rather complex coherencies. Rule-based process models are well-suited for modeling these processes. There exist a number of process mining approaches to discover rule-based process models from event logs. However, existing rule-based approaches are typically based on a given set of rule templates and predominately consider control flow aspects. By only considering a given set of templates, contemporary approaches underlie a representational bias. The usage of a fixed language frequently ends into insuffcient languages. In this paper we propose an approach to automatically suggest adequate resource-aware rule templates for a given domain by pre-processing the provided event log using frequent pattern mining techniques. These templates can then be instantiated and checked by process mining methods.

Keywords

Rule-based process mining Resource-aware process mining Frequent pattern mining 

Notes

Acknowledgement

The presented work is developed and used in the project “Kompetenzzentrum für praktisches Prozess- und Qualitätsmanagement”, which is funded by “Europäischer Fonds für regionale Entwicklung (EFRE)”.

References

  1. 1.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between flexibility and support. Comput. Sci.- Res. Deve. 23(2), 99–113 (2009)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W., Weijters, T.: Process mining: a research agenda. Comput. Ind. 53(3), 231–244 (2004)CrossRefGoogle Scholar
  5. 5.
    Agrawal, R., Srikant, R.: Mining generalized association rules. Future Gener. Comput. Syst. (FGCS) 13(2), 161–180 (1997)Google Scholar
  6. 6.
    Bose, R.P.J.C., Maggi, F.M., van der Aalst, W.M.P.: Enhancing declare maps based on event correlations. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 97–112. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Caron, F., Vanthienen, J., Baesens, B.: Advances in Rule-Based Process Mining: Applications for Enterprise Risk Management and Auditing. SSRN (2013). http://www.ssrn.com/abstract=2246722
  8. 8.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Ciccio, C.D., Mecella, M.: MINERful: a mining algorithm for declarative process constraints in MailOfMine. Technical report, Sapienza University of Rome. Department of Computer and System Sciences (2012)Google Scholar
  10. 10.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal, S.: Declarative versus imperative process modeling languages: the issue of understandability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) Enterprise, Business-Process and Information Systems Modeling. LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  12. 12.
    Jablonski, S.: MOBILE: A modular workflow model and architecture. In: International Working Conference on Dynamic Modelling and Information Systems. Delft University Press (1994)Google Scholar
  13. 13.
    Maggi, F.M., Dumas, M., García-Bañuelos, L., Montali, M.: Discovering data-aware declarative process models from event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 81–96. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Maggi, F.M., Mooij, A., van der Aalst, W.: User-guided discovery of declarative process models. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 192–199. IEEE (2011)Google Scholar
  15. 15.
    Marin, M., Hull, R., Vaculín, R.: Data centric BPM and the emerging case management standard: a short survey. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 24–30. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    de Medeiros, A.K.A., Weijters, T., van der Aalst, W.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Disc. 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Schönig, S., Zeising, M., Jablonski, S.: Supporting collaborative work by learning process models and patterns from cases. In: Bertino, E., Georgakopoulos, D., Srivatsa, M., Nepal, S., Vinciarelli, A. (eds.) CollaborateCom, pp. 60–69. ICST / IEEE (2013)Google Scholar
  19. 19.
    Schönig, S., Zeising, M., Jablonski, S.: Towards location-aware declarative business process management. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014 Workshops. LNBIP, vol. 183, pp. 40–51. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Tung, A., Lu, H., Han, J., Feng, L.: Efficient mining of intertransaction association rules. IEEE Trans. Knowl. Data Eng. (TKDE) 15(1), 43–56 (2003)CrossRefGoogle Scholar
  21. 21.
    Vaculín, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative business artifact centric modeling of decision and knowledge intensive business processes. In: EDOC, pp. 151–160. IEEE Computer Society (2011)Google Scholar
  22. 22.
    Vaculín, R., Hull, R., Vukovic, M., Heath, T., Mills, N., Sun, Y.: Supporting collaborative decision processes. In: IEEE SCC, pp. 651–658. IEEE, June 2013Google Scholar
  23. 23.
    Weijters, T., de Medeiros, A.K.A.: Process mining with the heuristics miner-algorithm. Eindhoven University of Technology, Technical report (2006)Google Scholar
  24. 24.
    Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Trans. Inf. Syst. 22(3), 381–405 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Schönig
    • 1
  • Florian Gillitzer
    • 1
  • Michael Zeising
    • 1
  • Stefan Jablonski
    • 1
  1. 1.University of BayreuthBayreuthGermany

Personalised recommendations