International Conference on Intelligent Robotics and Applications

ICIRA 2015: Intelligent Robotics and Applications pp 185-195 | Cite as

Learning the Stiffness of a Continuous Soft Manipulator from Multiple Demonstrations

  • Danilo Bruno
  • Sylvain Calinon
  • Milad S. Malekzadeh
  • Darwin G. Caldwell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9246)

Abstract

Continuous soft robots are becoming more and more widespread in applications, due to their increased safety and flexibility in critical applications. The possibility of having soft robots that are able to change their stiffness in selected parts can help in situations where higher forces need to be applied. This paper describes a theoretical framework for learning the desired stiffness characteristics of the robot from multiple demonstrations. The framework is based on a statistical mathematical model for encoding the motion of a continuous manipulator, coupled with an optimal control strategy for learning the best impedance parameters of the manipulator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jiang, A., Xynogalas, G., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2922–2927 (2012)Google Scholar
  2. 2.
    Jiang, A., Ataollahi, A., Althoefer, K., Dasgupta, P., Nanayakkara, T.: A variable stiffness joint by granular jamming. In: ASME Intl Design Engineering Technical Conf. & Computers and Information in Engineering Conf. (IDETC/CIE), pp. 267–275 (2012)Google Scholar
  3. 3.
    Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Menciassi, A.: STIFF-FLOP surgical manipulator: mechanical design and experimental characterization of the single module. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3567–3581 (2013)Google Scholar
  4. 4.
    Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P., Menciassi, A.: Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the stiff-flop approach. Soft Robotics 1(2), 122–131 (2014)CrossRefGoogle Scholar
  5. 5.
    Calinon, S., D’halluin, F., Sauser, E.L., Caldwell, D.G., Billard, A.G.: Learning and reproduction of gestures by imitation: An approach based on hidden Markov model and Gaussian mixture regression. IEEE Robotics and Automation Magazine 17, 44–54 (2010)CrossRefGoogle Scholar
  6. 6.
    Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.: Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation 25(2), 328–373 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Calinon, S., Li, Z., Alizadeh, T., Tsagarakis, N.G., Caldwell, D.G.: Statistical dynamical systems for skills acquisition in humanoids. In: Proc. IEEE Intl Conf. on Humanoid Robots (Humanoids), Osaka, Japan, pp. 323–329 (2012)Google Scholar
  8. 8.
    Calinon, S., Bruno, D., Caldwell, D.G.: A task-parameterized probabilistic model with minimal intervention control. In: Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), Hong Kong, China, pp. 3339–3344, May-June 2014Google Scholar
  9. 9.
    Calinon, S., Billard, A.G.: Recognition and reproduction of gestures usinga probabilistic framework combining PCA, ICA and HMM. In: Proc. Intl Conf. on Machine Learning (ICML), Bonn, Germany, pp. 105–112, August 2005Google Scholar
  10. 10.
    Lee, D., Ott, C.: Incremental kinesthetic teaching of motion primitives using the motion refinement tube. Autonomous Robots 31(2), 115–131 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Astrom, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton (2008) Google Scholar
  12. 12.
    Medina, J.R., Lee, D., Hirche, S.: Risk-sensitive optimal feedback control for haptic assistance. In: IEEE Intl Conf. on Robotics and Automation (ICRA), pp. 1025–1031, May 2012Google Scholar
  13. 13.
    Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nature Neuroscience 5, 1226–1235 (2002)CrossRefGoogle Scholar
  14. 14.
    Flash, T., Hochner, B.: Motor primitives in vertebrates and invertebrates. Current Opinion in Neurobiology 15(6), 660–666 (2005)CrossRefGoogle Scholar
  15. 15.
    Zelman, I., Titon, M., Yekutieli, Y., Hanassy, S., Hochner, B., Flash, T.: Kinematic decomposition and classification of octopus arm movements. Frontiers in Computational Neuroscience 7(60) (2013)Google Scholar
  16. 16.
    Malekzadeh, M.S., Calinon, S., Bruno, D., Caldwell, D.G.: Learning by imitation with the STIFF-FLOP surgical robot: A biomimetic approach inspired by octopus movements. Robotics and Biomimetics, Special Issue on Medical Robotics 1, 1–15 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Danilo Bruno
    • 1
  • Sylvain Calinon
    • 1
    • 2
  • Milad S. Malekzadeh
    • 1
  • Darwin G. Caldwell
    • 1
  1. 1.Department of Advanced RoboticsIstituto Italiano di Tecnologia (IIT)GenovaItaly
  2. 2.Idiap Research InstituteMartignySwitzerland

Personalised recommendations