Advertisement

Bionic Graphene Nanosensors

Chapter
  • 2.2k Downloads
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 5)

Abstract

The synergistic integration of electronics with biological systems could enable the development of novel sensing devices that could provide new fundamental insights to biomolecular interactions, as well as facilitating the development of novel biointerfaced device architectures. Indeed, the creation of high-performance biomedical sensors with real-time, point-of-care detection could potentially revolutionize the field of early diagnosis and treatment of diseases, improving quality of life. Of particular interest is multitiered interfacing of sensing materials with biology; for example, by coupling the innate selectivity of naturally evolved biomolecules with highly sensitive nanosensors, and subsequently biointerfacing such devices onto the body for real-time detection. This is particularly useful for continual monitoring and diagnosis of complex diseases such as asthma, in which understandings of disease development and the role of environmental triggers are limited. Here, we provide an overview of our specific contributions in: (1) biotransfering graphene sensors onto biological systems to enable a unique bionic nanosensor platform, (2) the detection of bacteria using such platforms via the coupling of antimicrobial peptide bio-recognition molecules to the graphene transducer, (3) the integration of an inductive meander coil with such devices to enable wireless powering and remote readout, (4) the scaling of such devices to wafer-scale arrays using standard microfabrication processing techniques, and (5) the functionalization of these graphene device arrays with a variety of antibodies for ultrasensitive detection of cytokines that are relevant to the detection and diagnosis of asthma from exhaled breath condensate. These results suggest a next-generation “bionic nanosensing” platform that may ultimately promote effective, noninvasive diagnosis and advanced mediation of diseases via early onset detection and continuous tracking of disease progression. Ultimately, large-scale adoption of such systems may enable population pool clinical studies involving dynamic, noninvasive collection of biomarkers for health infrastructure statistical analyses. The graphene bionic nanosensor platform thus represents a powerful new biointerfaced sensing paradigm, with a diverse range of applications.

Keywords

Chronic Obstructive Pulmonary Disease Silk Fibroin Exhale Breath Condensate Graphene Film Noninvasive Diagnosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge support of this work by the Air Force Office of Scientific Research (#FA9550-09-1-0096 and #FA9550-12-1-0368), by the American Asthma Foundation (#09–0038), and by the Grand Challenges Program at Princeton University.

References

  1. 1.
    In Dictionary.com Unabridged. (Random House, Inc)Google Scholar
  2. 2.
    In Online Etymology Dictionary. (Douglas Harper, Historian.)Google Scholar
  3. 3.
    W. Craelius, The bionic man: restoring mobility. Science 295, 1018–1019 + 1021 (2002)CrossRefGoogle Scholar
  4. 4.
    R.F. Service, Bioelectronics. The cyborg era begins. Science 340, 1162–1165 (2013)CrossRefGoogle Scholar
  5. 5.
    M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, M.C. McAlpine, 3D printed bionic ears. Nano Lett. 13, 2634–2639 (2013)CrossRefGoogle Scholar
  6. 6.
    B.S. Wilson, C.C. Finley, D.T. Lawson, R.D. Wolford, D.K. Eddington, W.M. Rabinowitz, Better speech recognition with cochlear implants. Nature 352, 236–238 (1991)CrossRefGoogle Scholar
  7. 7.
    L. da Cruz, B.F. Coley, J. Dorn, F. Merlini, E. Filley, P. Christopher, F.K. Chen, V. Wuyyuru, J. Sahel, P. Stanga, M. Humayun, R.J. Greenberg, G. Dagnelie, The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br. J. Ophthalmol. 97, 632–636 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014)Google Scholar
  9. 9.
    J. Kim, G. Valdes-Ramirez, A.J. Bandodkar, W. Jia, A.G. Martinez, J. Ramirez, P. Mercier, J. Wang, Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 1632–1636 (2014)CrossRefGoogle Scholar
  10. 10.
    A.J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J.R. Windmiller, G. Valdes-Ramirez, F.J. Andrade, M.J. Schoning, J. Wang, Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 54, 603–609 (2014)CrossRefGoogle Scholar
  11. 11.
    P. Chulsung, P.H. Chou, B. Ying, R. Matthews, A. Hibbs, in IEEE Biomed. Circuits Syst Conf. 2006. 241–244, doi:10.1109/BIOCAS.2006.4600353Google Scholar
  12. 12.
    H. Eunjeh, N. Seungwoo, Y. Chiyul, K. Hee Chan, in IEEE Sens. Appl. Symp. (SAS). 2014. 94–96, doi:10.1109/SAS.2014.6798924Google Scholar
  13. 13.
    W. Honda, S. Harada, T. Arie, S. Akita, K. Takei, Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 24, 3299–3304 (2014)CrossRefGoogle Scholar
  14. 14.
    D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N. Lu, T. Hyeon, D.H. Kim, Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotech. 9, 397–404 (2014)CrossRefGoogle Scholar
  15. 15.
    W.C. Stacey, B. Litt, Technology insight: neuroengineering and epilepsy–designing devices for seizure control. Nat. Clin. Pract. Neuro. 4, 190–201 (2008)Google Scholar
  16. 16.
    S.S. Lobodzinski, M.M. Laks, New devices for very long-term ECG monitoring. Cardiol. J. 19, 210–214 (2012)CrossRefGoogle Scholar
  17. 17.
    A.G. Avila, J.P. Hinestroza, Smart textiles: tough cotton. Nat. Nanotech. 3, 458–459 (2008)CrossRefGoogle Scholar
  18. 18.
    E. Dolgin, Technology: dressed to detect. Nature 511, 16–17 (2014)CrossRefGoogle Scholar
  19. 19.
    J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)CrossRefGoogle Scholar
  20. 20.
    P.G. Agache, C. Monneur, J.L. Leveque, J. De Rigal, Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. Res. 269, 221–232 (1980)CrossRefGoogle Scholar
  21. 21.
    M.F. Ashby, Materials Selection in Mechanical Design, 1st edn. (Pergamon Press, Oxford, 1992)Google Scholar
  22. 22.
    M.A. Nicolelis, D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew, J.D. Kralik, S.P. Wise, Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA. 100, 11041–11046 (2003)CrossRefGoogle Scholar
  23. 23.
    S. Giselbrecht, B.E. Rapp, C.M. Niemeyer, The chemistry of cyborgs—interfacing technical devices with organisms. Angew. Chem., Int. Ed. Engl. 52, 13942–13957 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulovic, Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics. 7, 13–23 (2013)CrossRefGoogle Scholar
  25. 25.
    S.W. Lee, C. Mao, C.E. Flynn, A.M. Belcher, Ordering of quantum dots, using genetically engineered viruses. Science 296, 892–895 (2002)CrossRefGoogle Scholar
  26. 26.
    M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6, 379–384 (2007)CrossRefGoogle Scholar
  27. 27.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  28. 28.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)CrossRefGoogle Scholar
  29. 29.
    Y.M. Lin, A. Valdes-Garcia, S.J. Han, D.B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, K.A. Jenkins, Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011)CrossRefGoogle Scholar
  30. 30.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  31. 31.
    T. Cohen-Karni, C.M. Lieber, Nanowire nanoelectronics: Building interfaces with tissue and cells at the natural scale of biology. Pure Appl. Chem. 85, 883–901 (2013)CrossRefGoogle Scholar
  32. 32.
    T. Dvir, B.P. Timko, M.D. Brigham, S.R. Naik, S.S. Karajanagi, O. Levy, H. Jin, K.K. Parker, R. Langer, D.S. Kohane, Nanowired three-dimensional cardiac patches. Nat. Nanotech. 6, 720–725 (2011)CrossRefGoogle Scholar
  33. 33.
    M.J. Troughton, Handbook of Plastics Joining: A Practical Guide, 2nd edn. 191 (William Andrew Inc., USA, 2008)Google Scholar
  34. 34.
    T. Starner, Human-powered wearable computing. IBM Syst. J. 35, 618–629 (1996)CrossRefGoogle Scholar
  35. 35.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)CrossRefGoogle Scholar
  36. 36.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001)CrossRefGoogle Scholar
  37. 37.
    P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399 (2000)CrossRefGoogle Scholar
  38. 38.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRefGoogle Scholar
  39. 39.
    P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)CrossRefGoogle Scholar
  40. 40.
    P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000)CrossRefGoogle Scholar
  41. 41.
    K.J. Loh, J.P. Lynch, N.A. Kotov, Passive wireless sensing using SWNT-based multifunctional thin film patches. Int. J. Appl. Electrom. 28, 87–94 (2008)Google Scholar
  42. 42.
    L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)CrossRefGoogle Scholar
  43. 43.
    D.Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)CrossRefGoogle Scholar
  44. 44.
    J.A. Rogers, M.G. Lagally, R.G. Nuzzo, Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011)CrossRefGoogle Scholar
  45. 45.
    E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006)CrossRefGoogle Scholar
  46. 46.
    J.L. West, N.J. Halas, Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003)CrossRefGoogle Scholar
  47. 47.
    E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007)CrossRefGoogle Scholar
  48. 48.
    S.P. Koenig, N.G. Boddeti, M.L. Dunn, J.S. Bunch, Ultrastrong adhesion of graphene membranes. Nat. Nanotech. 6, 543–546 (2011)CrossRefGoogle Scholar
  49. 49.
    G.A. Rance, D.H. Marsh, S.J. Bourne, T.J. Reade, A.N. Khlobystov, van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACS Nano. 4, 4920–4928 (2010)CrossRefGoogle Scholar
  50. 50.
    M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, M.C. McAlpine, Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012)CrossRefGoogle Scholar
  51. 51.
    D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333, 838–843 (2011)CrossRefGoogle Scholar
  52. 52.
    T.D. Nguyen, N. Deshmukh, J.M. Nagarah, T. Kramer, P.K. Purohit, M.J. Berry, M.C. McAlpine, Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotech. 7, 587–593 (2012)CrossRefGoogle Scholar
  53. 53.
    D.H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, D.L. Kaplan, F.G. Omenetto, Y. Huang, K.C. Hwang, M.R. Zakin, B. Litt, J.A. Rogers, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)CrossRefGoogle Scholar
  54. 54.
    G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005)CrossRefGoogle Scholar
  55. 55.
    Z. Kuang, S.N. Kim, W.J. Crookes-Goodson, B.L. Farmer, R.R. Naik, Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano. 4, 452–458 (2010)CrossRefGoogle Scholar
  56. 56.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  57. 57.
    L. Liao, Y.C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010)CrossRefGoogle Scholar
  58. 58.
    C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, J. Hone, Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotech. 4, 861–867 (2009)CrossRefGoogle Scholar
  59. 59.
    Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Biocompatible graphene oxide-based glucose biosensors. Langmuir 26, 6158–6160 (2010)CrossRefGoogle Scholar
  60. 60.
    C. Staii, A.T. Johnson Jr., M. Chen, A. Gelperin, DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 5, 1774–1778 (2005)CrossRefGoogle Scholar
  61. 61.
    G. Peng, E. Trock, H. Haick, Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett. 8, 3631–3635 (2008)CrossRefGoogle Scholar
  62. 62.
    J.H. Ahn, H.S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y. Sun, R.G. Nuzzo, J.A. Rogers, Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006)CrossRefGoogle Scholar
  63. 63.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRefGoogle Scholar
  64. 64.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  65. 65.
    W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)CrossRefGoogle Scholar
  66. 66.
    W. Yang, K.R. Ratinac, S.R. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. 49, 2114–2138 (2010)CrossRefGoogle Scholar
  67. 67.
    X. Dong, Y. Shi, W. Huang, P. Chen, L.J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649–1653 (2010)CrossRefGoogle Scholar
  68. 68.
    N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008)CrossRefGoogle Scholar
  69. 69.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRefGoogle Scholar
  70. 70.
    R. Huang, Graphene: show of adhesive strength. Nat. Nanotech. 6, 537–538 (2011)CrossRefGoogle Scholar
  71. 71.
    M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Atomic structure of graphene on SiO2. Nano Lett. 7, 1643–1648 (2007)CrossRefGoogle Scholar
  72. 72.
    A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRefGoogle Scholar
  73. 73.
    W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell, L.M. Smith, R.J. Hamers DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1, 253–257 (2002)CrossRefGoogle Scholar
  74. 74.
    Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy III, C.J. Summers, M. Liu, K.H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446, 172–175 (2007)CrossRefGoogle Scholar
  75. 75.
    A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Ding, Z.L. Wang, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 88, 203101–203103 (2006)CrossRefGoogle Scholar
  76. 76.
    D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1924 (2004)CrossRefGoogle Scholar
  77. 77.
    Y.L. Bunimovich, Y.S. Shin, W.S. Yeo, M. Amori, G. Kwong, J.R. Heath, Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128, 16323–16331 (2006)CrossRefGoogle Scholar
  78. 78.
    O. Kuzmych, B.L. Allen, A. Star, Carbon nanotube sensors for exhaled breath components. Nanotechnology 18, 375502 (2007)CrossRefGoogle Scholar
  79. 79.
    M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006)CrossRefGoogle Scholar
  80. 80.
    R.A. Goldsby, Immunology, 5th edn. (W.H. Freeman, USA 2003)Google Scholar
  81. 81.
    J.R. Uzarski, C.M. Mello, Detection and classification of related lipopolysaccharides via a small array of immobilized antimicrobial peptides. Anal. Chem. 84, 7359–7366 (2012)CrossRefGoogle Scholar
  82. 82.
    T.Z. Wu, Y.R. Lo, E.C. Chan, Exploring the recognized bio-mimicry materials for gas sensing. Biosens. Bioelectron. 16, 945–953 (2001)CrossRefGoogle Scholar
  83. 83.
    M. Mascini, A. Macagnano, D. Monti, M. Del Carlo, R. Paolesse, B. Chen, P. Warner, A. D’Amico, C. Di Natale, D. Compagnone, Piezoelectric sensors for dioxins: a biomimetic approach. Biosens. Bioelectron. 20, 1203–1210 (2004)CrossRefGoogle Scholar
  84. 84.
    C. Buerger, K. Nagel-Wolfrum, C. Kunz, I. Wittig, K. Butz, F. Hoppe-Seyler, B. Groner, Sequence-specific peptide aptamers, interacting with the intracellular domain of the epidermal growth factor receptor, interfere with Stat3 activation and inhibit the growth of tumor cells. J. Biol. Chem. 278, 37610–37621 (2003)CrossRefGoogle Scholar
  85. 85.
    P. Colas, B. Cohen, T. Jessen, I. Grishina, J. McCoy, R. Brent, Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380, 548–550 (1996)CrossRefGoogle Scholar
  86. 86.
    Y. Cui, S.N. Kim, R.R. Naik, M.C. McAlpine, Biomimetic peptide nanosensors. Acc. Chem. Res. 45, 696–704 (2012)CrossRefGoogle Scholar
  87. 87.
    M. Sarikaya, C. Tamerler, A.K. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003)CrossRefGoogle Scholar
  88. 88.
    R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1, 169–172 (2002)CrossRefGoogle Scholar
  89. 89.
    N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276, 233–235 (1997)CrossRefGoogle Scholar
  90. 90.
    D. Kisailus, Q. Truong, Y. Amemiya, J.C. Weaver, D.E. Morse, Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc. Natl. Acad. Sci. USA. 103, 5652–5657 (2006)CrossRefGoogle Scholar
  91. 91.
    R.F Service. Can sensors make a home in the body? Science 297, 962–963 (2002)CrossRefGoogle Scholar
  92. 92.
    H. Yao, A.J. Shum, M. Cowan, I. Lahdesmaki, B.A. Parviz, A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 26, 3290–3296 (2011)CrossRefGoogle Scholar
  93. 93.
    A.C.R. Grayson, R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y. Li, M.J. Cima, R. Langer, A bioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE. 92, 6–21 (2004)CrossRefGoogle Scholar
  94. 94.
    M.L. Neat, R. Peacock, R.T. Brittain, Implantation of electrodes in the dentine of an upper canine tooth in the dog. Br. J. Pharmacol. 43, 476P–477P (1971)Google Scholar
  95. 95.
    C.M. Li, H. Dong, X. Cao, J.H. Luong, X. Zhang, Implantable electrochemical sensors for biomedical and clinical applications: progress, problems, and future possibilities. Curr. Med. Chem. 14, 937–951 (2007)CrossRefGoogle Scholar
  96. 96.
    M.O. Schurr, S. Schostek, C.N. Ho, F. Rieber, A. Menciassi, Microtechnologies in medicine: an overview. Minim. Invasiv. Ther. 16, 76–86 (2007)CrossRefGoogle Scholar
  97. 97.
    C. Vepari, D.L. Kaplan, Silk as a Biomaterial. Prog. Polym. Sci. 32, 991–1007 (2007)CrossRefGoogle Scholar
  98. 98.
    D.H. Kim, Y.S. Kim, J. Amsden, B. Panilaitis, D.L. Kaplan, F.G. Omenetto, M.R. Zakin, J.A. Rogers, Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 95, 133701 (2009)CrossRefGoogle Scholar
  99. 99.
    K.G. Ong, C.A. Grimes, C.L. Robbins, R.S. Singh, Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor. Sens. Actuators, A 93, 33–43 (2001)CrossRefGoogle Scholar
  100. 100.
    K.G. Ong, J. Wang, R.S. Singh, L.G. Bachas, C.A. Grimes, Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing. Biosens. Bioelectron. 16, 305–312 (2001)CrossRefGoogle Scholar
  101. 101.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  102. 102.
    J.A. Timlin, A. Carden, M.D. Morris, R.M. Rajachar, D.H. Kohn, Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal. Chem. 72, 2229–2236 (2000)CrossRefGoogle Scholar
  103. 103.
    U.B. Schaad, Which number of infecting bacteria is of clinical relevance? Infection 11(Suppl 2), S87–89 (1983)CrossRefGoogle Scholar
  104. 104.
    G.A. Zelada-Guillen, J. Riu, A. Duzgun, F.X. Rius, Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometrie aptasensor. Angew. Chem. Int. Ed. Engl. 48, 7334–7337 (2009)CrossRefGoogle Scholar
  105. 105.
    P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella Jr., F. Milanovich, PCR detection of bacteria in seven minutes. Science 284, 449–450 (1999)CrossRefGoogle Scholar
  106. 106.
    Y. Li, Y.T. Cu, D. Luo, Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol. 23, 885–889 (2005)CrossRefGoogle Scholar
  107. 107.
    Y. Cui, S.N. Kim, S.E. Jones, L.L. Wissler, R.R. Naik, M.C. McAlpine, Chemical functionalization of graphene enabled by phage displayed peptides. Nano Lett. 10, 4559–4565 (2010)CrossRefGoogle Scholar
  108. 108.
    M.J. Pender, L.A. Sowards, J.D. Hartgerink, M.O. Stone, R.R. Naik, Peptide-mediated formation of single-wall carbon nanotube composites. Nano Lett. 6, 40–44 (2006)CrossRefGoogle Scholar
  109. 109.
    M. Zelzer, R.V. Ulijn, Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem. Soc. Rev. 39, 3351–3357 (2010)CrossRefGoogle Scholar
  110. 110.
    M.S. Mannoor, S. Zhang, A.J. Link, M.C. McAlpine, Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc. Natl. Acad. Sci. USA. 107, 19207–19212 (2010)CrossRefGoogle Scholar
  111. 111.
    N.V. Kulagina, K.M. Shaffer, G.P. Anderson, F.S. Ligler, C.R. Taitt, Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Anal. Chim. Acta. 575, 9–15 (2006)CrossRefGoogle Scholar
  112. 112.
    M. Zasloff, Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002)CrossRefGoogle Scholar
  113. 113.
    L. Chen, Y. Li, J. Li, X. Xu, R. Lai, Q. Zou, An antimicrobial peptide with antimicrobial activity against Helicobacter pylori. Peptides 28, 1527–1531 (2007)CrossRefGoogle Scholar
  114. 114.
    S.N. Kim, Z. Kuang, J.M. Slocik, S.E. Jones, Y. Cui, B.L. Farmer, M.C. McAlpine, R.R. Naik, Preferential binding of peptides to graphene edges and planes. J. Am. Chem. Soc. 133, 14480–14483 (2011)CrossRefGoogle Scholar
  115. 115.
    M.A. Beard-Pegler, E. Stubbs, A.M. Vickery, Observations on the resistance to drying of staphylococcal strains. J. Med. Microbiol. 26, 251–255 (1988)CrossRefGoogle Scholar
  116. 116.
    M.A. Beard-Pegler, A.M. Vickery, Lysogenicity of methicillin-resistant strains of Staphylococcus aureus. J. Med. Microbiol. 20, 147–155 (1985)CrossRefGoogle Scholar
  117. 117.
    R.A. Potyrailo, W.G. Morris, Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal. Chem. 79, 45–51 (2007)CrossRefGoogle Scholar
  118. 118.
    N. Strand, A. Bhushan, M. Schivo, N.J. Kenyon, C.E. Davis, Chemically polymerized polypyrrole for on-chip concentration of volatile breath metabolites. Sens. Actuators B 143, 516–523 (2010)CrossRefGoogle Scholar
  119. 119.
    M. Phillips, Method for the collection and assay of volatile organic compounds in breath. Anal. Biochem. 247, 272–278 (1997)CrossRefGoogle Scholar
  120. 120.
    S. Webb, Attacks on asthma. Nat. Biotechnol. 29, 860–863 (2011)CrossRefGoogle Scholar
  121. 121.
    R. Beasley, J. Crane, C.K. Lai, N. Pearce, Prevalence and etiology of asthma. J. Allergy Clin. Immunol. 105, 466–472 (2000)CrossRefGoogle Scholar
  122. 122.
    World Health Organization, W. H. O. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. (World Health Organization, Switzerland, 2007)Google Scholar
  123. 123.
    S. Kazani, E. Israel, Update in Asthma. Am. J. Respir. Crit. Care Med. 184, 291–296 (2011)CrossRefGoogle Scholar
  124. 124.
    L.J. Akinbami, K.C. Schoendorf, Trends in childhood asthma: prevalence, health care utilization, and mortality. Pediatrics 110, 315–322 (2002)CrossRefGoogle Scholar
  125. 125.
    P.A. Eggleston, Environmental causes of asthma in inner city children. The national cooperative inner city asthma study. Clin. Rev. Allergy Immunol. 18, 311–324 (2000)CrossRefGoogle Scholar
  126. 126.
    H. Pinnock, R. Shah, Asthma. BMJ 334, 847–850 (2007)CrossRefGoogle Scholar
  127. 127.
    American Thoracic Society/European Respiratory Society (ATS/ERS) recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 171, 912–930 (2005)CrossRefGoogle Scholar
  128. 128.
    R.F. Lemanske, W.W. Busse, Asthma: clinical expression and molecular mechanisms. J. Allergy Clin. Immunol. 125, 95–102 (2010)CrossRefGoogle Scholar
  129. 129.
    F.D. Martinez, Development of wheezing disorders and asthma in preschool children. Pediatrics 109, 362–367 (2002)Google Scholar
  130. 130.
    A.L. Lefkovitz, B.J. Zarowitz, Is that case of asthma really COPD, and does the diagnosis matter? Geriatr. Nur. (Lond.). 30, 409–413 (2009)CrossRefGoogle Scholar
  131. 131.
    P.J. Barnes, Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 8, 183–192 (2008)CrossRefGoogle Scholar
  132. 132.
    S.T. Holgate, R. Polosa, Treatment strategies for allergy and asthma. Nat. Rev. Immunol. 8, 218–230 (2008)CrossRefGoogle Scholar
  133. 133.
    J.C. Renauld, New insights into the role of cytokines in asthma. J. Clin. Pathol. 54, 577–589 (2001)CrossRefGoogle Scholar
  134. 134.
    C.M. Robroeks, Q. Jobsis, J.G. Damoiseaux, P.H. Heijmans, P.P. Rosias, H.J. Hendriks, E. Dompeling, Cytokines in exhaled breath condensate of children with asthma and cystic fibrosis. Ann. Allergy Asthma. Immunol. 96, 349–355 (2006)CrossRefGoogle Scholar
  135. 135.
    C.M. Robroeks, G.T. Rijkers, Q. Jobsis, H.J. Hendriks, J.G. Damoiseaux, L.J. Zimmermann, O.P. van Schayck, E. Dompeling, Increased cytokines, chemokines and soluble adhesion molecules in exhaled breath condensate of asthmatic children. Clin. Exp. Allergy. 40, 77–84 (2010)CrossRefGoogle Scholar
  136. 136.
    T. Ichinose, K. Sadakane, H. Takano, R. Yanagisawa, M. Nishikawa, I. Mori, H. Kawazato, A. Yasuda, K. Hiyoshi, T. Shibamoto, Enhancement of mite allergen-induced eosinophil infiltration in the murine airway and local cytokine/chemokine expression by Asian sand dust. J. Toxicol. Environ. Health A 69, 1571–1585 (2006)CrossRefGoogle Scholar
  137. 137.
    S.K. Shahid, S.A. Kharitonov, N.M. Wilson, A. Bush, P.J. Barnes, Increased interleukin-4 and decreased interferon-gamma in exhaled breath condensate of children with asthma. Am. J. Respir. Crit. Care Med. 165, 1290–1293 (2002)CrossRefGoogle Scholar
  138. 138.
    W. Chen, Z. Lu, C.M. Li, Sensitive human interleukin 5 impedimetric sensor based on polypyrrole-pyrrolepropylic acid-gold nanocomposite. Anal. Chem. 80, 8485–8492 (2008)CrossRefGoogle Scholar
  139. 139.
    H.H.H. Shen, S.I. Ochkur, M.P. McGarry, J.R. Crosby, E.M. Hines, M.T. Borchers, H.Y. Wang, T.L. Biechelle, K.R. O’Neill, T.L. Ansay, D.C. Colbert, S.A. Cormier, J.P. Justice, N.A. Lee, J.J. Lee, A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse. J. Immunol. 170, 3296–3305 (2003)CrossRefGoogle Scholar
  140. 140.
    C.J. Sanderson, Interleukin-5, eosinophils, and disease. Blood 79, 3101–3109 (1992)Google Scholar
  141. 141.
    K. Takatsu, A. Tominaga, N. Harada, S. Mita, M. Matsumoto, T. Takahashi, Y. Kikuchi, N. Yamaguchi, T cell-replacing factor (TRF)/interleukin 5 (IL-5): molecular and functional properties. Immunol. Rev. 102, 107–135 (1988)CrossRefGoogle Scholar
  142. 142.
    J. Hunt, Exhaled breath condensate: an evolving tool for noninvasive evaluation of lung disease. J. Allergy Clin. Immunol. 110, 28–34 (2002)CrossRefGoogle Scholar
  143. 143.
    G.M. Mutlu, K.W. Garey, R.A. Robbins, L.H. Danziger, I. Rubinstein, Collection and analysis of exhaled breath condensate in humans. Am. J. Respir. Crit. Care Med. 164, 731–737 (2001)CrossRefGoogle Scholar
  144. 144.
    A. Koch, J. Knobloch, C. Dammhayn, M. Raidl, A. Ruppert, H. Hag, D. Rottlaender, K. Muller, E. Erdmann, Effect of bacterial endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics. Clin. Immunol. 125, 194–204 (2007)CrossRefGoogle Scholar
  145. 145.
    L. Borg, J. Kristiansen, J.M. Christensen, K.F. Jepsen, L.K. Poulsen, Evaluation of accuracy and uncertainty of ELISA assays for the determination of interleukin-4, interleukin-5, interferon-gamma and tumor necrosis factor-alpha. Clin. Chem. Lab. Med. 40, 509–519 (2002)CrossRefGoogle Scholar
  146. 146.
    M. Tary-Lehmann, D.E. Hricik, A.C. Justice, N.S. Potter, P.S. Heeger, Enzyme-linked immunosorbent assay spot detection of interferon-gamma and interleukin 5-producing cells as a predictive marker for renal allograft failure. Transplantation 66, 219–224 (1998)CrossRefGoogle Scholar
  147. 147.
    R.M. Effros, R. Casaburi, J. Su, M. Dunning, J. Torday, J. Biller, R. Shaker, The effects of volatile salivary acids and bases on exhaled breath condensate pH. Am. J. Respir. Crit. Care Med. 173, 386–392 (2006)CrossRefGoogle Scholar
  148. 148.
    I. Horvath, J. Hunt, P.J. Barnes, K. Alving, A. Antczak, E. Baraldi, G. Becher, W.J. van Beurden, M. Corradi, R. Dekhuijzen, R.A. Dweik, T. Dwyer, R. Effros, S. Erzurum, B. Gaston, C. Gessner, A. Greening, L.P. Ho, J. Hohlfeld, Q. Jobsis, D. Laskowski, S. Loukides, D. Marlin, P. Montuschi, A.C. Olin, A.E. Redington, P. Reinhold, E.L. van Rensen, I. Rubinstein, P. Silkoff, K. Toren, G. Vass, C. Vogelberg, H. Wirtz, Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J. 26, 523–548 (2005)CrossRefGoogle Scholar
  149. 149.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA. 102, 10451–10453 (2005)CrossRefGoogle Scholar
  150. 150.
    E.D. Minot, A.M. Janssens, I. Heller, H.A. Heering, C. Dekker, S.G. Lemay, Carbon nanotube biosensors: the critical role of the reference electrode. Appl. Phys. Lett. 91, 093507 (2007)CrossRefGoogle Scholar
  151. 151.
    T. Lohmann, K. von Klitzing, J.H. Smet, Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping. Nano Lett. 9, 1973–1979 (2009)CrossRefGoogle Scholar
  152. 152.
    F. Schwierz, Graphene transistors. Nat. Nanotech. 5, 487–496 (2010)CrossRefGoogle Scholar
  153. 153.
    A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, R.M. Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011)CrossRefGoogle Scholar
  154. 154.
    M.Y. Yeh, E.L. Burnham, M. Moss, L.A. Brown, Non-invasive evaluation of pulmonary glutathione in the exhaled breath condensate of otherwise healthy alcoholics. Respir. Med. 102, 248–255 (2008)CrossRefGoogle Scholar
  155. 155.
    T. Ueno, M. Kataoka, A. Hirano, K. Iio, Y. Tanimoto, A. Kanehiro, C. Okada, R. Soda, K. Takahashi, M. Tanimoto, Inflammatory markers in exhaled breath condensate from patients with asthma. Respirology 13, 654–663 (2008)CrossRefGoogle Scholar
  156. 156.
    J.N. Israelachvili, Intermolecular and Surface Forces, 3rd edn. (Academic, USA 2011)Google Scholar
  157. 157.
    E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, M.A. Reed, Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7, 3405–3409 (2007)CrossRefGoogle Scholar
  158. 158.
    S. Sorgenfrei, C.Y. Chiu, M. Johnston, C. Nuckolls, K.L. Shepard, Debye screening in single-molecule carbon nanotube field-effect sensors. Nano Lett. 11, 3739–3743 (2011)CrossRefGoogle Scholar
  159. 159.
    R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839 (2001)CrossRefGoogle Scholar
  160. 160.
    D.W. Boukhvalov, M.I. Katsnelson, Chemical functionalization of graphene with defects. Nano Lett. 8, 4373–4379 (2008)CrossRefGoogle Scholar
  161. 161.
    P.R. Nair, M.A. Alam, Screening-limited response of nanobiosensors. Nano Lett. 8, 1281–1285 (2008)CrossRefGoogle Scholar
  162. 162.
    K. Cung, R.L. Slater, Y. Cui, S.E. Jones, H. Ahmad, R.R. Naik, M.C. McAlpine, Rapid, multiplexed microfluidic phage display. Lab Chip. 12, 562–565 (2012)CrossRefGoogle Scholar
  163. 163.
    L. Clifton, D.A. Clifton, M.A.F. Pimentel, P.J. Watkinson, L. Tarassenko, Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors. IEEE J. Biomed. Health. 18, 722–730 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations