Advertisement

The xBR\(^+\)-tree: An Efficient Access Method for Points

  • George Roumelis
  • Michael VassilakopoulosEmail author
  • Thanasis Loukopoulos
  • Antonio Corral
  • Yannis Manolopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9261)

Abstract

Spatial indexes, such as those based on Quadtree, are important in spatial databases for efficient execution of queries involving spatial constraints. In this paper, we present improvements of the xBR-tree (a member of the Quadtree family) with modified internal node structure and tree building process, called xBR\(^+\)-tree. We highlight the differences of the algorithms for processing single dataset queries between the xBR and xBR\(^+\)-trees and we demonstrate performance results (I/O efficiency and execution time) of extensive experimentation (based on real and synthetic datasets) on tree building process and processing of single dataset queries, using the two structures. These results show that the two trees are comparable, regarding their building performance, however, the xBR\(^+\)-tree is an overall winner, regarding spatial query processing.

Keywords

Spatial access methods Quadtrees xBR-trees Query processing. 

References

  1. 1.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD Conference, pp. 322–331 (1990)Google Scholar
  2. 2.
    Finkel, R., Bentley, J.: Quad trees: a data structure for retrieval on composite keys. Acta Informatica 4, 1–9 (1974)CrossRefGoogle Scholar
  3. 3.
    Gaede, V., Gunther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2), 170–231 (1998)CrossRefGoogle Scholar
  4. 4.
    Gorawski, M., Bugdol, M.: Cost Model for XBR-tree. In: Kozielski, S., Wrembel, R. (eds.) New Trends in Data Warehousing and Data Analysis. Springer, USA (2009)Google Scholar
  5. 5.
    Hoel, E.G., Samet, H.: A qualitative comparison study of data structures for large line segment databases. In: SIGMOD Conference, pp. 205–214 (1992)Google Scholar
  6. 6.
    Hoel, E.G., Samet, H.: Benchmarking spatial join operations with spatial output. In: VLDB Conference, pp. 606–618 (1995)Google Scholar
  7. 7.
    Kim, Y.J., Patel, J.: Performance comparison of the R*-tree and the quadtree for kNN and distance join queries. IEEE Trans. Knowl. Data Eng. 22(7), 1014–1027 (2010)CrossRefGoogle Scholar
  8. 8.
    Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A., Theodoridis, Y.: R-Trees: Theory and Applications. Springer, London (2006)CrossRefGoogle Scholar
  9. 9.
    Roumelis, G., Vassilakopoulos, M., Corral, A.: Algorithms for processing Nearest Neighbor Queries using xBR-trees. In: Panhellenic Conference on Informatics, pp. 51–55 (2011)Google Scholar
  10. 10.
    Roumelis, G., Vassilakopoulos, M., Corral, A.: Performance comparison of xBR-trees and R*-trees for single dataset spatial queries. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 228–242. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, Boston (1990)Google Scholar
  12. 12.
    Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, Boston (1990)Google Scholar
  13. 13.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Publishers, San Francisco (2006)zbMATHGoogle Scholar
  14. 14.
    Samet, H.: The quadtree and related hierarchical data structure. Comput. Surv. 16(2), 187–260 (1984)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vassilakopoulos, M., Manolopoulos, Y.: External balanced regular (x-BR) trees: new structures for very large spatial databases. In: Panhellenic Conference on Informatics, pp. 324–333 (2000)Google Scholar
  16. 16.
    Yin, X., Düntsch, I., Gediga, G.: Quadtree representation and compression of spatial data. In: Peters, J.F., Skowron, A., Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) Transactions on Rough Sets XIII. LNCS, vol. 6499, pp. 207–239. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • George Roumelis
    • 1
  • Michael Vassilakopoulos
    • 2
    Email author
  • Thanasis Loukopoulos
    • 3
  • Antonio Corral
    • 4
  • Yannis Manolopoulos
    • 1
  1. 1.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Electrical and Computer EngineeringUniversity of ThessalyVolosGreece
  3. 3.Department of Computer Science and Biomedical InformaticsUniversity of ThessalyLamiaGreece
  4. 4.Department of InformaticsUniversity of AlmeriaAlmeriaSpain

Personalised recommendations