• Lori Frappier
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 391)


Epstein–Barr nuclear antigen 1 (EBNA1) plays multiple important roles in EBV latent infection and has also been shown to impact EBV lytic infection. EBNA1 is required for the stable persistence of the EBV genomes in latent infection and activates the expression of other EBV latency genes through interactions with specific DNA sequences in the viral episomes. EBNA1 also interacts with several cellular proteins to modulate the activities of multiple cellular pathways important for viral persistence and cell survival. These cellular effects are also implicated in oncogenesis, suggesting a direct role of EBNA1 in the development of EBV-associated tumors.


DNA replication Mitotic segregation Transcriptional activation DNA binding Host protein interactions 


  1. Altmann M, Pich D, Ruiss R, Wang J, Sugden B, Hammerschmidt W (2006) Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV’s transforming genes. Proc Natl Acad Sci USA 103(38):14188–14193PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ambinder RF, Shah WA, Rawlins DR, Hayward GS, Hayward SD (1990) Definition of the sequence requirements for binding of the EBNA-1 protein to its palindromic target sites in Epstein-Barr virus DNA. J Virol 64:2369–2379PubMedCentralPubMedGoogle Scholar
  3. Ambinder RF, Mullen M, Chang Y, Hayward GS, Hayward SD (1991) Functional domains of Epstein-Barr nuclear antigen EBNA-1. J Virol 65:1466–1478PubMedCentralPubMedGoogle Scholar
  4. Apcher S, Komarova A, Daskalogianni C, Yin Y, Malbert-Colas L, Fahraeus R (2009) mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J Virol 83(3):1289–1298PubMedCentralPubMedCrossRefGoogle Scholar
  5. Apcher S, Daskalogianni C, Manoury B, Fahraeus R (2010) Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathog 6(10):e1001151. doi: 10.1371/journal.ppat.1001151 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Aras S, Singh G, Johnston K, Foster T, Aiyar A (2009) Zinc coordination is required for and regulates transcription activation by Epstein-Barr nuclear antigen 1. PLoS Pathog 5(6):e1000469. doi: 10.1371/journal.ppat.1000469 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Atanasiu C, Deng Z, Wiedmer A, Norseen J, Lieberman PM (2006) ORC binding to TRF2 stimulates OriP replication. EMBO Rep 7(7):716–721PubMedCentralPubMedCrossRefGoogle Scholar
  8. Avolio-Hunter TM, Frappier L (1998) Mechanistic studies on the DNA linking activity of the Epstein-Barr nuclear antigen 1. Nucl Acids Res 26:4462–4470PubMedCentralPubMedCrossRefGoogle Scholar
  9. Avolio-Hunter TM, Frappier L (2003) EBNA1 efficiently assembles on chromatin containing the Epstein-Barr virus latent origin of replication. Virol 315:398–408CrossRefGoogle Scholar
  10. Avolio-Hunter TM, Lewis PN, Frappier L (2001) Epstein-Barr nuclear antigen 1 binds and destabilizes nucleosomes at the viral origin of latent DNA replication. Nucl Acids Res 29:3520–3528PubMedCentralPubMedCrossRefGoogle Scholar
  11. Babcock GJ, Hochberg D, Thorley-Lawson DA (2000) The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13:497–506PubMedCrossRefGoogle Scholar
  12. Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Joukov V, Walter JC, Luger K, Kaye KM (2006) The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 311(5762):856–861PubMedCrossRefGoogle Scholar
  13. Bashaw JM, Yates JL (2001) Replication from oriP of Epstein-Barr virus requires exact spacing of two bound dimers of EBNA1 which bend DNA. J Virol 75:10603–10611PubMedCentralPubMedCrossRefGoogle Scholar
  14. Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016PubMedCrossRefGoogle Scholar
  15. Blake N, Lee S, Redchenko I, Thomas W, Steven N, Leese A, Steigerwald-Mullen P, Kurilla MG, Frappier L, Rickinson A (1997) Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-ALA) containing protein requires exogenous processing. Immunity 7:791–802PubMedCrossRefGoogle Scholar
  16. Bochkarev A, Barwell J, Pfuetzner R, Furey W, Edwards A, Frappier L (1995) Crystal structure of the DNA binding domain of the Epstein-Barr virus origin binding protein EBNA1. Cell 83:39–46PubMedCrossRefGoogle Scholar
  17. Bochkarev A, Barwell J, Pfuetzner R, Bochkareva E, Frappier L, Edwards AM (1996) Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin binding protein, EBNA1, bound to DNA. Cell 84:791–800PubMedCrossRefGoogle Scholar
  18. Bochkarev A, Bochkareva E, Frappier L, Edwards AM (1998) 2.2A structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1. J Mol Biol 284:1273–1278PubMedCrossRefGoogle Scholar
  19. Brink AA, Meijer CJ, Nicholls JM, Middeldorp JM, van den Brule AJ (2001) Activity of the EBNA1 promoter associated with lytic replication (Fp) in Epstein-Barr virus associated disorders. Mol Pathol 54(2):98–102PubMedCentralPubMedCrossRefGoogle Scholar
  20. Canaan A, Haviv I, Urban AE, Schulz VP, Hartman S, Zhang Z, Palejev D, Deisseroth AB, Lacy J, Snyder M, Gerstein M, Weissman SM (2009) EBNA1 regulates cellular gene expression by binding cellular promoters. Proc Natl Acad Sci USA 106(52):22421–22426. doi: 10.1073/pnas.0911676106 (0911676106 [pii])
  21. Cao JY, Mansouri S, Frappier L (2011) Changes in the nasopharyngeal carcinoma nuclear proteome induced by the EBNA1 protein of Epstein-Barr virus reveal potential roles for EBNA1 in metastasis and oxidative stress responses. J Virol. doi: 10.1128/JVI.05648-11 (JVI.05648-11 [pii])
  22. Cao JY, Shire K, Landry C, Gish GD, Pawson T, Frappier L (2014) Identification of a novel protein interaction motif in the regulatory subunit of casein kinase 2. Mol Cell Biol 34(2):246–258. doi: 10.1128/MCB.00968-13MCB.00968-13 ([pii])
  23. Ceccarelli DFJ, Frappier L (2000) Functional analyses of the EBNA1 origin DNA binding protein of Epstein-Barr virus. J Virol 74:4939–4948PubMedCentralPubMedCrossRefGoogle Scholar
  24. Cerimele F, Battle T, Lynch R, Frank DA, Murad E, Cohen C, Macaron N, Sixbey J, Smith K, Watnick RS, Eliopoulos A, Shehata B, Arbiser JL (2005) Reactive oxygen signaling and MAPK activation distinguish Epstein-Barr Virus (EBV)-positive versus EBV-negative Burkitt’s lymphoma. Proc Natl Acad Sci USA 102(1):175–179. doi: 10.1073/pnas.0408381102 (0408381102 [pii])
  25. Chaudhuri B, Xu H, Todorov I, Dutta A, Yates JL (2001) Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci USA 98:10085–10089PubMedCentralPubMedCrossRefGoogle Scholar
  26. Chen M-R, Middeldorp JM, Hayward SD (1993) Separation of the complex DNA binding domain of EBNA-1 into DNA recognition and dimerization subdomains of novel structure. J Virol 67:4875–4885PubMedCentralPubMedGoogle Scholar
  27. Chen YL, Liu CD, Cheng CP, Zhao B, Hsu HJ, Shen CL, Chiu SJ, Kieff E, Peng CW (2014) Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proc Natl Acad Sci USA 111(1):243–248. doi: 10.1073/pnas.13218001111321800111 ([pii])
  28. Cheng TC, Hsieh SS, Hsu WL, Chen YF, Ho HH, Sheu LF (2010) Expression of Epstein-Barr nuclear antigen 1 in gastric carcinoma cells is associated with enhanced tumorigenicity and reduced cisplatin sensitivity. Int J Oncol 36(1):151–160PubMedGoogle Scholar
  29. Coppotelli G, Mughal N, Callegari S, Sompallae R, Caja L, Luijsterburg MS, Dantuma NP, Moustakas A, Masucci MG (2013) The Epstein-Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins. Nucleic Acids Res 41(5):2950–2962. doi: 10.1093/nar/gkt032 ([pii])
  30. Cruickshank J, Davidson A, Edwards AM, Frappier L (2000) Two domains of the Epstein-Barr virus origin DNA binding protein, EBNA1, orchestrate sequence-specific DNA binding. J Biol Chem 275:22273–22277PubMedCrossRefGoogle Scholar
  31. Cummins JM, Rago C, Kohli M, Kinzler KW, Lengauer C, Vogelstein B (2004) Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428:486–487Google Scholar
  32. D’Herouel AF, Birgersdotter A, Werner M (2010) FR-like EBNA1 binding repeats in the human genome. Virology 405(2):524–529. doi: 10.1016/j.virol.2010.06.040 (S0042-6822(10)00422-8 [pii])
  33. Dantuma NP, Heessen S, Lindsten K, Jellne M, Masucci MG (2000) Inhibition of proteasomal degradation by the gly-Ala repeat of Epstein-Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc Natl Acad Sci USA 97(15):8381–8385PubMedCentralPubMedCrossRefGoogle Scholar
  34. Daskalogianni C, Apcher S, Candeias MM, Naski N, Calvo F, Fahraeus R (2008) Gly-Ala repeats induce position- and substrate-specific regulation of 26 S proteasome-dependent partial processing. J Biol Chem 283(44):30090–30100PubMedCentralPubMedCrossRefGoogle Scholar
  35. Delecluse H-J, Bartnizke S, Hammerschmidt W, Bullerdiek J, Bornkamm GW (1993) Episomal and integrated copies of Epstein-Barr virus coexist in Burkitt’s lymphoma cell lines. J Virol 67:1292–1299PubMedCentralPubMedGoogle Scholar
  36. Deng Z, Lezina L, Chen C-J, Shtivelband S, So W, Lieberman PM (2002) Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell 9:493–503PubMedCrossRefGoogle Scholar
  37. Deng Z, Atanasiu C, Burg JS, Broccoli D, Lieberman PM (2003) Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein-Barr virus OriP. J Virol 77(22):11992–12001PubMedCentralPubMedCrossRefGoogle Scholar
  38. Deng Z, Atanasiu C, Zhao K, Marmorstein R, Sbodio JI, Chi NW, Lieberman PM (2005) Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. J Virol 79(8):4640–4650PubMedCentralPubMedCrossRefGoogle Scholar
  39. Deutsch MJ, Ott E, Papior P, Schepers A (2010) The latent origin of replication of Epstein-Barr virus directs viral genomes to active regions of the nucleus. J Virol 84(5):2533–2546. doi: 10.1128/JVI.01909-09 (JVI.01909-09 [pii])
  40. Dhar V, Schildkraut CL (1991) Role of EBNA-1 in arresting replication forks at the Epstein-Barr virus oriP family of tandem repeats. Mol Cell Biol 11:6268–6278PubMedCentralPubMedCrossRefGoogle Scholar
  41. Dhar SK, Yoshida K, Machida Y, Khaira P, Chaudhuri B, Wohlschlegel JA, Leffak M, Yates J, Dutta A (2001) Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 106:287–296PubMedCrossRefGoogle Scholar
  42. Dheekollu J, Deng Z, Wiedmer A, Weitzman MD, Lieberman PM (2007) A role for MRE11, NBS1, and recombination junctions in replication and stable maintenance of EBV episomes. PLoS ONE 2(12):e1257PubMedCentralPubMedCrossRefGoogle Scholar
  43. Dresang LR, Vereide DT, Sugden B (2009) Identifying sites bound by Epstein-Barr virus nuclear antigen 1 (EBNA1) in the human genome: defining a position-weighted matrix to predict sites bound by EBNA1 in viral genomes. J Virol 83(7):2930–2940. doi: 10.1128/JVI.01974-08 (JVI.01974-08 [pii])
  44. Dyson PJ, Farrell PJ (1985) Chromatin structure of Epstein-Barr virus. J Gen Virol 66(Pt 9):1931–1940PubMedCrossRefGoogle Scholar
  45. Edwards AM, Bochkarev A, Frappier L (1998) Origin DNA-binding proteins. Curr Opin Struct Biol 8:49–53PubMedCrossRefGoogle Scholar
  46. Ermakova O, Frappier L, Schildkraut CL (1996) Role ot the EBNA-1 protein in pausing of replication forks in the Epstein-Barr virus genome. J Biol Chem 271:33009–33017PubMedCrossRefGoogle Scholar
  47. Everett RD (2001) DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20(49):7266–7273PubMedCrossRefGoogle Scholar
  48. Everett RD, Chelbi-Alix MK (2007) PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89(6–7):819–830PubMedCrossRefGoogle Scholar
  49. Everett R, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J (1997) A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J 16:1519–1530PubMedCentralPubMedCrossRefGoogle Scholar
  50. Fahraeus R (2005) Do peptides control their own birth and death? Nat Rev Mol Cell Biol 6(3):263–267PubMedCrossRefGoogle Scholar
  51. Feeney KM, Saade A, Okrasa K, Parish JL (2011) In vivo analysis of the cell cycle dependent association of the bovine papillomavirus E2 protein and ChlR1. Virology 414(1):1–9. doi: 10.1016/j.virol.2011.03.015 (S0042-6822(11)00140-1 [pii])
  52. Flavell JR, Baumforth KR, Wood VH, Davies GL, Wei W, Reynolds GM, Morgan S, Boyce A, Kelly GL, Young LS, Murray PG (2008) Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood 111(1):292–301PubMedCrossRefGoogle Scholar
  53. Frappier L, O’Donnell M (1991a) Epstein-Barr nuclear antigen 1 mediates a DNA loop within the latent replication origin of Epstein-Barr virus. Proc Natl Acad Sci USA 88:10875–10879PubMedCentralPubMedCrossRefGoogle Scholar
  54. Frappier L, O’Donnell M (1991b) Overproduction, purification and characterization of EBNA1, the origin binding protein of Epstein-Barr virus. J Biol Chem 266:7819–7826PubMedGoogle Scholar
  55. Frappier L, O’Donnell M (1992) EBNA1 distorts oriP, the Epstein-Barr virus latent replication origin. J Virol 66:1786–1790PubMedCentralPubMedGoogle Scholar
  56. Frappier L, Verrijzer CP (2011) Gene expression control by protein deubiquitinases. Curr Opin Genet Dev 21(2):207–213. doi: 10.1016/j.gde.2011.02.005 (S0959-437X(11)00048-7 [pii])
  57. Frappier L, Goldsmith K, Bendell L (1994) Stabilization of the EBNA1 protein on the Epstein-Barr virus latent origin of DNA replication by a DNA looping mechanism. J Biol Chem 269:1057–1062PubMedGoogle Scholar
  58. Gahn TA, Schildkraut CL (1989) The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell 58:527–535PubMedCrossRefGoogle Scholar
  59. Gahn T, Sugden B (1995) An EBNA1 Dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstien-Barr virus LMP gene. J Virol 69:2633–2636PubMedCentralPubMedGoogle Scholar
  60. Geoffroy MC, Chelbi-Alix MK (2011) Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res 31(1):145–158. doi: 10.1089/jir.2010.0111 PubMedCrossRefGoogle Scholar
  61. Goldsmith K, Bendell L, Frappier L (1993) Identification of EBNA1 amino acid sequences required for the interaction of the functional elements of the Epstein-Barr virus latent origin of DNA replication. J Virol 67:3418–3426PubMedCentralPubMedGoogle Scholar
  62. Grogan EA, Summers WP, Dowling S, Shedd D, Gradoville L, Miller G (1983) Two Epstein-Barr viral nuclear neoantigens distinguished by gene transfer, serology and chromosome binding. Proc Natl Acad Sci USA 80:7650–7653PubMedCentralPubMedCrossRefGoogle Scholar
  63. Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S, Masucci MG (2009) The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci USA 106(7):2313–2318. doi: 10.1073/pnas.0810619106 (0810619106 [pii])
  64. Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W, Pandolfi PP (2000) The function of PML in p53-dependent apoptosis. Nat Cell Biol 2(10):730–736PubMedCrossRefGoogle Scholar
  65. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, Verbel DA, Cordon-Cardo C, Pandolfi PP (2004) Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96(4):269–279PubMedCrossRefGoogle Scholar
  66. Harris A, Young BD, Griffin BE (1985) Random association of Epstein-Barr virus genomes with host cell metaphase chromosomes in Burkitt’s lymphoma-derived cell lines. J Virol 56:328–332PubMedCentralPubMedGoogle Scholar
  67. Harrison S, Fisenne K, Hearing J (1994) Sequence requirements of the Epstein-Barr virus latent origin of DNA replication. J Virol 68(3):1913–1925PubMedCentralPubMedGoogle Scholar
  68. Hearing J, Mulhaupt Y, Harper S (1992) Interaction of Epstein-Barr virus nuclear antigen 1 with the viral latent origin of replication. J Virol 66:694–705PubMedCentralPubMedGoogle Scholar
  69. Heessen S, Leonchiks A, Issaeva N, Sharipo A, Selivanova G, Masucci MG, Dantuma NP (2002) Functional p53 chimeras containing the Epstein-Barr virus Gly-Ala repeat are protected from Mdm2- and HPV-E6-induced proteolysis. Proc Natl Acad Sci USA 99(3):1532–1537PubMedCentralPubMedCrossRefGoogle Scholar
  70. Hegde RS, Grossman SR, Laimins LA, Sigler PB (1992) Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DNA-binding protein bound to its DNA target. Nature 359:505–512PubMedCrossRefGoogle Scholar
  71. Hodin TL, Najrana T, Yates JL (2013) Efficient replication of Epstein-Barr virus-derived plasmids requires tethering by EBNA1 to host chromosomes. J Virol 87(23):13020–13028. doi: 10.1128/JVI.01606-13JVI.01606-13 ([pii])
  72. Holowaty MN, Sheng Y, Nguyen T, Arrowsmith C, Frappier L (2003a) Protein interaction domains of the ubiqutin specific protease, USP7/HAUSP. J Biol Chem 278:47753–47761PubMedCrossRefGoogle Scholar
  73. Holowaty MN, Zeghouf M, Wu H, Tellam J, Athanasopoulos V, Greenblatt J, Frappier L (2003b) Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 278(32):29987–29994. doi: 10.1074/jbc.M303977200M303977200 ([pii])
  74. Holowaty MN, Zeghouf M, Wu H, Tellam J, Athanasopoulos V, Greenblatt J, Frappier L (2003c) Protein profiling with Epstein-Barr nuclear antigen 1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 278:29987–29994PubMedCrossRefGoogle Scholar
  75. Hong M, Murai Y, Kutsuna T, Takahashi H, Nomoto K, Cheng CM, Ishizawa S, Zhao QL, Ogawa R, Harmon BV, Tsuneyama K, Takano Y (2006) Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt’s lymphoma cells. J Cancer Res Clin Oncol 132(1):1–8PubMedCrossRefGoogle Scholar
  76. Hsieh D-J, Camiolo SM, Yates JL (1993) Constitutive binding of EBNA1 protein to the Epstein-Barr virus replication origin, oriP, with distortion of DNA structure during latent infection. EMBO J 12:4933–4944PubMedCentralPubMedGoogle Scholar
  77. Hu M, Gu L, Li M, Jeffrey PD, Gu W, Shi Y (2006) Structural basis of competitive recognition of p53 and MDM2 by HAUSP/USP7: implications for the regulation of the p53-MDM2 pathway. PLoS Biol 4(2):e27PubMedCentralPubMedCrossRefGoogle Scholar
  78. Hume S, Reisbach G, Feederle R, Delecluse H-J, Bousset K, Hammerschmidt W, Schepers A (2003) The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci 100:10989–10994CrossRefGoogle Scholar
  79. Hung SC, Kang M-S, Kieff E (2001) Maintenance of Epstein-Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci USA 98:1865–1870PubMedCentralPubMedCrossRefGoogle Scholar
  80. Iizasa H, Wulff BE, Alla NR, Maragkakis M, Megraw M, Hatzigeorgiou A, Iwakiri D, Takada K, Wiedmer A, Showe L, Lieberman P, Nishikura K (2010) Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem 285(43):33358–33370. doi: 10.1074/jbc.M110.138362M110.138362 ([pii])
  81. Ilves I, Maemets K, Silla T, Janikson K, Ustav M (2006) Brd4 is involved in multiple processes of the bovine papillomavirus type 1 life cycle. J Virol 80(7):3660–3665PubMedCentralPubMedCrossRefGoogle Scholar
  82. Jager W, Santag S, Weidner-Glunde M, Gellermann E, Kati S, Pietrek M, Viejo-Borbolla A, Schulz TF (2012) The ubiquitin-specific protease USP7 modulates the replication of Kaposi’s sarcoma-associated herpesvirus latent episomal DNA. J Virol 86(12):6745–6757. doi: 10.1128/JVI.06840-11 (JVI.06840-11 [pii])
  83. Jones CH, Hayward SD, Rawlins DR (1989) Interaction of the lymphocyte-derived Epstein-Barr virus nuclear antigen EBNA-1 with its DNA-binding sites. J Virol 63:101–110PubMedCentralPubMedGoogle Scholar
  84. Jourdan N, Jobart-Malfait A, Dos Reis G, Quignon F, Piolot T, Klein C, Tramier M, Coppey-Moisan M, Marechal V (2012) Live-cell imaging reveals multiple interactions between Epstein-Barr virus nuclear antigen 1 and cellular chromatin during interphase and mitosis. J Virol 86(9):5314–5329. doi: 10.1128/JVI.06303-11 (JVI.06303-11 [pii])
  85. Julien MD, Polonskaya Z, Hearing J (2004) Protein and sequence requirements for the recruitment of the human origin recognition complex to the latent cycle origin of DNA replication of Epstein-Barr virus oriP. Virology 326(2):317–328PubMedCrossRefGoogle Scholar
  86. Kamranvar SA, Masucci MG (2011) The Epstein-Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress. Leukemia 25(6):1017–1025. doi: 10.1038/leu.2011.35leu201135 ([pii])
  87. Kanda T, Otter M, Wahl GM (2001) Coupling of mitotic chromosome tethering and replication competence in Epstein-Barr virus-based plasmids. Mol Cell Biol 21:3576–3588PubMedCentralPubMedCrossRefGoogle Scholar
  88. Kanda T, Kamiya M, Maruo S, Iwakiri D, Takada K (2007) Symmetrical localization of extrachromosomally replicating viral genomes on sister chromatids. J Cell Sci 120(Pt 9):1529–1539PubMedCrossRefGoogle Scholar
  89. Kanda T, Horikoshi N, Murata T, Kawashima D, Sugimoto A, Narita Y, Kurumizaka H, Tsurumi T (2013) Interaction between basic residues of Epstein-Barr virus EBNA1 protein and cellular chromatin mediates viral plasmid maintenance. J Biol Chem 288(33):24189–24199. doi: 10.1074/jbc.M113.491167M113.491167 ([pii])
  90. Kang MS, Lu H, Yasui T, Sharpe A, Warren H, Cahir-McFarland E, Bronson R, Hung SC, Kieff E (2005) Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc Natl Acad Sci USA 102(3):820–825PubMedCentralPubMedCrossRefGoogle Scholar
  91. Kang MS, Soni V, Bronson R, Kieff E (2008) Epstein-Barr Virus Nuclear Antigen 1 does not cause lymphoma in C57BL/6J mice. J Virol 82:4180–4183PubMedCentralPubMedCrossRefGoogle Scholar
  92. Kapoor P, Frappier L (2003) EBNA1 partitions Epstein-Barr virus plasmids in yeast by attaching to human EBNA1-binding protein 2 on mitotic chromosomes. J Virol 77:6946–6956PubMedCentralPubMedCrossRefGoogle Scholar
  93. Kapoor P, Frappier L (2005) Methods for measuring the replication and segregation of Epstein-Barr virus-based plasmids. Methods Mol Biol 292:247–266PubMedGoogle Scholar
  94. Kapoor P, Shire K, Frappier L (2001) Reconstitution of Epstein-Barr virus-based plasmid partitioning in budding yeast. EMBO J 20:222–230PubMedCentralPubMedCrossRefGoogle Scholar
  95. Kapoor P, Lavoie BD, Frappier L (2005) EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by aurora family kinases. Mol Cell Biol 25(12):4934–4945PubMedCentralPubMedCrossRefGoogle Scholar
  96. Kaul R, Murakami M, Choudhuri T, Robertson ES (2007) Epstein-Barr virus latent nuclear antigens can induce metastasis in a nude mouse model. J Virol 81(19):10352–10361PubMedCentralPubMedCrossRefGoogle Scholar
  97. Kennedy G, Sugden B (2003) EBNA-1, a bifunctional transcriptional activator. Mol Cell Biol 23(19):6901–6908PubMedCentralPubMedCrossRefGoogle Scholar
  98. Kennedy G, Komano J, Sugden B (2003) Epstein-Barr virus provide a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci 100:14269–14274PubMedCentralPubMedCrossRefGoogle Scholar
  99. Khanna R, Burrows SR, Moss DJ (1995) Immune regulation in Epstein-Barr virus-associated diseases. Microbiol Rev 59(3):387–405PubMedCentralPubMedGoogle Scholar
  100. Kim HS, Lee MS (2007) STAT1 as a key modulator of cell death. Cell Signal 19(3):454–465. doi: 10.1016/j.cellsig.2006.09.003 (S0898-6568(06)00269-5 [pii])
  101. Kim AL, Maher M, Hayman JB, Ozer J, Zerby D, Yates JL, Lieberman PM (1997) An imperfect correlation between DNA replication activity of Epstein-Barr virus nuclear antigen 1 (EBNA1) and binding to the nuclear import receptor, Rch1/importin α. Virology 239:340–351PubMedCrossRefGoogle Scholar
  102. Kirchmaier AL, Sugden B (1997) Dominant-negative inhibitors of EBNA1 of Epstein-Barr virus. J Virol 71:1766–1775PubMedCentralPubMedGoogle Scholar
  103. Koons MD, Van Scoy S, Hearing J (2001) The replicator of the Epstein-Barr virus latent cycle origin of DNA replication, oriP, is composed of multiple functional elements. J Virol 75:10582–10592PubMedCentralPubMedCrossRefGoogle Scholar
  104. Krithivas A, Fujimuro M, Weidner M, Young DB, Hayward SD (2002) Protein interactions targeting the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus to cell chromosomes. J Virol 76:11596–11604PubMedCentralPubMedCrossRefGoogle Scholar
  105. Krysan PJ, Haase SB, Calos MP (1989) Isolation of human sequences that replicate autonomously in human cells. Mol Cell Biol 9:1026–1033PubMedCentralPubMedCrossRefGoogle Scholar
  106. Kube D, Vockerodt M, Weber O, Hell K, Wolf J, Haier B, Grasser FA, Muller-Lantzsch N, Kieff E, Diehl V, Tesch H (1999) Expression of Epstein-Barr virus nuclear antigen 1 is associated with enhanced expression of CD25 in the hodgkin cell line L428. J Virol 73:1630–1636PubMedCentralPubMedGoogle Scholar
  107. Laine A, Frappier L (1995) Identification of Epstein-Barr nuclear antigen 1 protein domains that direct interactions at a distance between DNA-bound proteins. J Biol Chem 270:30914–30918PubMedCrossRefGoogle Scholar
  108. Lassoued S, Ben Ameur R, Ayadi W, Gargouri B, Ben Mansour R, Attia H (2008) Epstein-Barr virus induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines. Mol Cell Biochem 313(1–2):179–186. doi: 10.1007/s11010-008-9755-z PubMedCrossRefGoogle Scholar
  109. Lear AL, Rowe M, Kurilla MG, Lee S, Henderson S, Kieff E, Rickinson AB (1992) The Epstein-Barr virus (EBV) nuclear antigen 1 BamHI F promoter is activated on entry of EBV-transformed B cells into the lytic cycle. J Virol 66(12):7461–7468PubMedCentralPubMedGoogle Scholar
  110. Lee MA, Diamond ME, Yates JL (1999) Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. J Virol 73(4):2974–2982PubMedCentralPubMedGoogle Scholar
  111. Lee HR, Choi WC, Lee S, Hwang J, Hwang E, Guchhait K, Haas J, Toth Z, Jeon YH, Oh TK, Kim MH, Jung JU (2011) Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein. Nat Struct Mol Biol 18(12):1336–1344. doi: 10.1038/nsmb.2142nsmb.2142 ([pii])
  112. Leen A, Meij P, Redchenko I, Middeldorp J, Bloemena E, Rickinson A, Blake N (2001) Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J Virol 75(18):8649–8659PubMedCentralPubMedCrossRefGoogle Scholar
  113. Leung CS, Haigh TA, Mackay LK, Rickinson AB, Taylor GS (2010) Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display. Proc Natl Acad Sci USA 107(5):2165–2170. doi: 10.1073/pnas.09094481070909448107 ([pii])
  114. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen P, Klein G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688PubMedCrossRefGoogle Scholar
  115. Levitskaya J, Shapiro A, Leonchiks A, Ciechanover A, Masucci MG (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616–12621PubMedCentralPubMedCrossRefGoogle Scholar
  116. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416(6881):648–653PubMedCrossRefGoogle Scholar
  117. Li M, Brooks CL, Kon N, Gu W (2004) A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 13(6):879–886. doi: 10.1016/S1097276504001571 ([pii])
  118. Lin A, Wang S, Nguyen T, Shire K, Frappier L (2008) The EBNA1 protein of Epstein-Barr virus functionally interacts with Brd4. J Virol 82(24):12009–12019PubMedCentralPubMedCrossRefGoogle Scholar
  119. Lindner SE, Zeller K, Schepers A, Sugden B (2008) The affinity of EBNA1 for its origin of DNA synthesis is a determinant of the origin’s replicative efficiency. J Virol 82(12):5693–5702PubMedCentralPubMedCrossRefGoogle Scholar
  120. Little RD, Schildkraut CL (1995) Initiation of latent DNA replicatoon in the Epstein-Barr virus genome can occur at sites other than the genetically defined origin. Mol Cell Biol 15:2893–2903PubMedCentralPubMedCrossRefGoogle Scholar
  121. Lu F, Wikramasinghe P, Norseen J, Tsai K, Wang P, Showe L, Davuluri RV, Lieberman PM (2010) Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1). Virol J 7:262. doi: 10.1186/1743-422X-7-262 (1743-422X-7-262 [pii])
  122. Lu J, Murakami M, Verma SC, Cai Q, Haldar S, Kaul R, Wasik MA, Middeldorp J, Robertson ES (2011) Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 410(1):64–75. doi: 10.1016/j.virol.2010.10.029 (S0042-6822(10)00676-8 [pii])
  123. Lupton S, Levine AJ (1985) Mapping of genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Mol Cell Biol 5:2533–2542PubMedCentralPubMedCrossRefGoogle Scholar
  124. Mackey D, Sugden B (1999) The linking regions of EBNA1 are essential for its support of replication and transcription. Mol Cell Biol 19:3349–3359PubMedCentralPubMedCrossRefGoogle Scholar
  125. Mackey D, Middleton T, Sugden B (1995) Multiple regions within EBNA1 can link DNAs. J Virol 69:6199–6208PubMedCentralPubMedGoogle Scholar
  126. Malik-Soni N, Frappier L (2012) Proteomic profiling of EBNA1-Host Protein Interactions in latent and lytic Epstein-Barr virus infections. J Virol 86(12):6999–7002. doi: 10.1128/JVI.00194-12 (JVI.00194-12 [pii])
  127. Malik-Soni N, Frappier L (2013) Nucleophosmin contributes to the transcriptional activation function of the Epstein-Barr virus EBNA1 Protein. J Virol. doi: 10.1128/JVI.02521-13 (JVI.02521-13 [pii])
  128. Mansouri S, Pan Q, Blencowe BJ, Claycomb JM, Frappier L (2014) Epstein-Barr Virus EBNA1 protein regulates viral latency through effects on let-7 MicroRNA and dicer. J Virol 88(19):11166–11177. doi: 10.1128/JVI.01785-14JVI.01785-14 ([pii])
  129. Marechal V, Dehee A, Chikhi-Brachet R, Piolot T, Coppey-Moisan M, Nicolas J (1999) Mapping EBNA1 domains involved in binding to metaphse chromosomes. J Virol 73:4385–4392PubMedCentralPubMedGoogle Scholar
  130. McPhillips MG, Oliveira JG, Spindler JE, Mitra R, McBride AA (2006) Brd4 is required for E2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J Virol 80(19):9530–9543PubMedCentralPubMedCrossRefGoogle Scholar
  131. Middleton T, Sugden B (1992) EBNA1 can link the enhancer element to the initiator element of the Epstein-Barr virus plasmid origin of DNA replication. J Virol 66:489–495PubMedCentralPubMedGoogle Scholar
  132. Moriyama K, Yoshizawa-Sugata N, Obuse C, Tsurimoto T, Masai H (2012) Epstein-Barr Nuclear Antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J Biol Chem 287(28):23977–23994. doi: 10.1074/jbc.M112.368456 (M112.368456 [pii])
  133. Munz C (2004) Epstein-barr virus nuclear antigen 1: from immunologically invisible to a promising T cell target. J Exp Med 199(10):1301–1304PubMedCentralPubMedCrossRefGoogle Scholar
  134. Munz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O’Donnell M, Steinman RM (2000) Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J Exp Med 191(10):1649–1660PubMedCentralPubMedCrossRefGoogle Scholar
  135. Murakami M, Lan K, Subramanian C, Robertson ES (2005) Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol 79(3):1559–1568PubMedCentralPubMedCrossRefGoogle Scholar
  136. Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, Balasubramanian S, Khanna R, Tellam J (2014) G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol 10(5):358–364. doi: 10.1038/nchembio.1479nchembio.1479 ([pii])
  137. Nanbo A, Sugden A, Sugden B (2007) The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. EMBO J 26(19):4252–4262PubMedCentralPubMedCrossRefGoogle Scholar
  138. Nayyar VK, Shire K, Frappier L (2009) Mitotic chromosome interactions of Epstein-Barr nuclear antigen 1 (EBNA1) and human EBNA1-binding protein 2 (EBP2). J Cell Sci 122(Pt 23):4341–4350PubMedCentralPubMedCrossRefGoogle Scholar
  139. Nicholson B, Suresh Kumar KG (2011) The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys 60(1–2):61–68. doi: 10.1007/s12013-011-9185-5 PubMedCrossRefGoogle Scholar
  140. Niller HH, Glaser G, Knuchel R, Wolf H (1995) Nucleoprotein complexes and DNA 5′-ends at oriP of Epstein-Barr virus. J Biol Chem 270:12864–12868PubMedCrossRefGoogle Scholar
  141. Nonkwelo C, Skinner J, Bell A, Rickinson A, Sample J (1996) Transcription start site downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA1 protein. J Virol 70:623–627PubMedCentralPubMedGoogle Scholar
  142. Norio P, Schildkraut CL (2001) Visualization of DNA replication on individual Epstein-Barr virus episomes. Science 294:2361–2364PubMedCrossRefGoogle Scholar
  143. Norio P, Schildkraut CL (2004) Plasticity of DNA replication initiation in Epstein-Barr virus episomes. PLoS Biol 2(6):e152PubMedCentralPubMedCrossRefGoogle Scholar
  144. Norio P, Schildkraut CL, Yates JL (2000) Initiation of DNA replication within oriP is dispensable for stable replication of the latent Epstein-Barr virus chromosome after infection of established cell lines. J Virol 74:8563–8574PubMedCentralPubMedCrossRefGoogle Scholar
  145. Norseen J, Thomae A, Sridharan V, Aiyar A, Schepers A, Lieberman PM (2008) RNA-dependent recruitment of the origin recognition complex. Embo J 27(22):3024–3035. doi: 10.1038/emboj.2008.221 (emboj2008221 [pii])
  146. Norseen J, Johnson FB, Lieberman PM (2009) Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J Virol 83(20):10336–10346. doi: 10.1128/JVI.00747-09 (JVI.00747-09 [pii])
  147. O’Neil JD, Owen TJ, Wood VH, Date KL, Valentine R, Chukwuma MB, Arrand JR, Dawson CW, Young LS (2008) Epstein-Barr virus-encoded EBNA1 modulates the AP-1 transcription factor pathway in nasopharyngeal carcinoma cells and enhances angiogenesis in vitro. J Gen Virol 89(Pt 11):2833–2842. doi: 10.1099/vir.0.2008/003392-0 (89/11/2833 [pii])
  148. Oddo C, Freire E, Frappier L, de Prat-Gay G (2006) Mechanism of DNA recognition at a viral replication origin. J Biol Chem 281(37):26893–26903PubMedCrossRefGoogle Scholar
  149. Ott E, Norio P, Ritzi M, Schildkraut C, Schepers A (2011) The dyad symmetry element of Epstein-Barr virus is a dominant but dispensable replication origin. PLoS ONE 6(5):e18609. doi: 10.1371/journal.pone.0018609PONE-D-10-06467 ([pii])
  150. Owen TJ, O’Neil JD, Dawson CW, Hu C, Chen X, Yao Y, Wood VH, Mitchell LE, White RJ, Young LS, Arrand JR (2010) Epstein-Barr virus-encoded EBNA1 enhances RNA polymerase III-dependent EBER expression through induction of EBER-associated cellular transcription factors. Mol Cancer 9:241. doi: 10.1186/1476-4598-9-2411476-4598-9-241 ([pii])
  151. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307(5709):593–596. doi: 10.1126/science.1104904 (1104904 [pii])
  152. Parish JL, Bean AM, Park RB, Androphy EJ (2006) ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell 24(6):867–876PubMedCrossRefGoogle Scholar
  153. Park YJ, Luger K (2006) Structure and function of nucleosome assembly proteins. Biochem Cell Biol 84(4):549–558PubMedCrossRefGoogle Scholar
  154. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406(6792):207–210PubMedCrossRefGoogle Scholar
  155. Petti L, Sample C, Kieff E (1990) Subnuclear localization and phosphorylation or Epstein-Barr virus latent infection nuclear proteins. Virology 176:563–574PubMedCrossRefGoogle Scholar
  156. Rawlins DR, Milman G, Hayward SD, Hayward GS (1985) Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA1) to clustered sites in the plasmid maintenance region. Cell 42:859–868PubMedCrossRefGoogle Scholar
  157. Reedman BM, Klein G (1973) Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int J Cancer 11:499–520PubMedCrossRefGoogle Scholar
  158. Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, Baiker A, Zerboni L, Arvin AM (2011) Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 7(2):e1001266. doi: 10.1371/journal.ppat.1001266 PubMedCentralPubMedCrossRefGoogle Scholar
  159. Reisman D, Sugden B (1986) trans Activation of an Epstein-Barr viral transcripitonal enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol 6:3838–3846PubMedCentralPubMedCrossRefGoogle Scholar
  160. Reisman D, Yates J, Sugden B (1985) A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol 5:1822–1832PubMedCentralPubMedCrossRefGoogle Scholar
  161. Ritzi M, Tillack K, Gerhardt J, Ott E, Humme S, Kremmer E, Hammerschmidt W, Schepers A (2003) Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein-Barr virus. J Cell Sci 116(Pt 19):3971–3984PubMedCrossRefGoogle Scholar
  162. Salomoni P, Ferguson BJ, Wyllie AH, Rich T (2008) New insights into the role of PML in tumour suppression. Cell Res 18(6):622–640PubMedCrossRefGoogle Scholar
  163. Salsman J, Jagannathan M, Paladino P, Chan PK, Dellaire G, Raught B, Frappier L (2012) Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J Virol 86(2):806–820. doi: 10.1128/JVI.05442-11JVI.05442-11 ([pii])
  164. Sample J, Henson EBD, Sample C (1992) The Epstein-Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. J Virol 66:4654–4661PubMedCentralPubMedGoogle Scholar
  165. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, Zhang RG, Liao J, Lee W, Edwards AM, Arrowsmith CH, Frappier L (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18(1):25–36PubMedCrossRefGoogle Scholar
  166. Sarkari F, Sanchez-Alcaraz T, Wang S, Holowaty MN, Sheng Y, Frappier L (2009) EBNA1-mediated recruitment of a histone H2B deubiquitylating complex to the Epstein-Barr virus latent origin of DNA replication. PLoS Pathog 5(10):e1000624. doi: 10.1371/journal.ppat.1000624 PubMedCentralPubMedCrossRefGoogle Scholar
  167. Sarkari F, Wang X, Nguyen T, Frappier L (2011) The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies. PLoS ONE 6(1):e16598. doi: 10.1371/journal.pone.0016598 PubMedCentralPubMedCrossRefGoogle Scholar
  168. Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, Teruya-Feldstein J, Tempst P, Pandolfi PP (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2):269–283PubMedCrossRefGoogle Scholar
  169. Scaglioni PP, Yung TM, Choi SC, Baldini C, Konstantinidou G, Pandolfi PP (2008) CK2 mediates phosphorylation and ubiquitin-mediated degradation of the PML tumor suppressor. Mol Cell Biochem 316:149–154PubMedCrossRefGoogle Scholar
  170. Schaefer BC, Strominger JL, Speck SH (1995) The Epstein-Barr virus BamHI F promoter is an early lytic promoter: lack of correlation with EBNA 1 gene transcription in group 1 Burkitt’s lymphoma cell lines. J Virol 69(8):5039–5047PubMedCentralPubMedGoogle Scholar
  171. Schepers A, Ritzi M, Bousset K, Kremmer E, Yates JL, Harwood J, Diffley JFX, Hammerschmidt W (2001) Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J 20:4588–4602PubMedCentralPubMedCrossRefGoogle Scholar
  172. Schweiger MR, You J, Howley PM (2006) Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function. J Virol 80(9):4276–4285PubMedCentralPubMedCrossRefGoogle Scholar
  173. Sears J, Kolman J, Wahl GM, Aiyar A (2003) Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of oriP plasmids but is insufficient for transcription activation by Epstein-Barr nuclear antigen 1. J Virol 77(21):11767–11780PubMedCentralPubMedCrossRefGoogle Scholar
  174. Sears J, Ujihara M, Wong S, Ott C, Middeldorp J, Aiyar A (2004) The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J Virol 78(21):11487–11505PubMedCentralPubMedCrossRefGoogle Scholar
  175. Seo S-B, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D (2001) Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the Set oncoprotein. Cell 104:119–130PubMedCrossRefGoogle Scholar
  176. Shah WA, Ambinder RF, Hayward GS, Hayward SD (1992) Binding of EBNA-1 to DNA creates a protease-resistant domain that encompasses the DNA recognition and dimerization functions. J Virology 66:3355–3362PubMedCentralPubMedGoogle Scholar
  177. Sharipo A, Imreh M, Leonchiks A, Imreh S, Masucci MG (1998) A minimal glycine-alanine repeat prevents the interaction of ubiquitinated I kappaB alpha with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat Med 4(8):939–944PubMedCrossRefGoogle Scholar
  178. Shaw J, Levinger L, Carter C (1979) Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines. J Virol 29:657–665PubMedCentralPubMedGoogle Scholar
  179. Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH, Frappier L (2006) Molecular recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct Mol Biol 13(3):285–291PubMedCrossRefGoogle Scholar
  180. Sheu LF, Chen A, Meng CL, Ho KC, Lee WH, Leu FJ, Chao CF (1996) Enhanced malignant progression of nasopharyngeal carcinoma cells mediated by the expression of Epstein-Barr nuclear antigen 1 in vivo. J Pathol 180(3):243–248PubMedCrossRefGoogle Scholar
  181. Shikama N, Chan HM, Krstic-Demonacos M, Smith L, Lee CW, Cairns W, La Thangue NB (2000) Functional interaction between nucleosome assembly proteins and p300/CREB-binding protein family coactivators. Mol Cell Biol 20(23):8933–8943PubMedCentralPubMedCrossRefGoogle Scholar
  182. Shire K, Ceccarelli DFJ, Avolio-Hunter TM, Frappier L (1999) EBP2, a human protein that interacts with sequences of the Epstein-Barr nuclear antigen 1 important for plasmid maintenance. J Virol 73:2587–2595PubMedCentralPubMedGoogle Scholar
  183. Shire K, Kapoor P, Jiang K, Hing MN, Sivachandran N, Nguyen T, Frappier L (2006) Regulation of the EBNA1 Epstein-Barr virus protein by serine phosphorylation and arginine methylation. J Virol 80(11):5261–5272PubMedCentralPubMedCrossRefGoogle Scholar
  184. Sides MD, Block GJ, Shan B, Esteves KC, Lin Z, Flemington EK, Lasky JA (2011) Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells. Virology 416(1–2):86–97. doi: 10.1016/j.virol.2011.04.005S0042-6822(11)00173-5 ([pii])
  185. Simpson K, McGuigan A, Huxley C (1996) Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol Cell Biol 16:5117–5126PubMedCentralPubMedCrossRefGoogle Scholar
  186. Sivachandran N, Sarkari F, Frappier L (2008) Epstein-Barr nuclear antigen 1 contributes to nasopharyngeal carcinoma through disruption of PML nuclear bodies. PLoS Pathog 4(10):e1000170. doi: 10.1371/journal.ppat.1000170 PubMedCentralPubMedCrossRefGoogle Scholar
  187. Sivachandran N, Cao JY, Frappier L (2010) Epstein-Barr virus nuclear antigen 1 Hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 84(21):11113–11123PubMedCentralPubMedCrossRefGoogle Scholar
  188. Sivachandran N, Dawson CW, Young LS, Liu FF, Middeldorp J, Frappier L (2012a) Contributions of the Epstein-Barr virus EBNA1 protein to gastric carcinoma. J Virol 86(1):60–68. doi: 10.1128/JVI.05623-11 (JVI.05623-11[pii])
  189. Sivachandran N, Wang X, Frappier L (2012b) Functions of the Epstein-Barr virus EBNA1 Protein in viral reactivation and lytic infection. J Virol 86(11):6146–6158. doi: 10.1128/JVI.00013-12 (JVI.00013-12 [pii])
  190. Snudden DK, Hearing J, Smith PR, Grasser FA, Griffin BE (1994) EBNA1, the major nuclear antigen of Epstein-Barr virus, resenbles ‘RGG’ RNA binding proteins. EMBO J 13:4840–4848Google Scholar
  191. Sternas L, Middleton T, Sugden B (1990) The average number of molecules of Epstein-Barr nuclear antigen 1 per cell does not correlate with the average number of Epstein-Barr virus (EBV) DNA molecules per cell among different clones of EBV-immortalized cells. JVirol 64:2407–2410Google Scholar
  192. Su W, Middleton T, Sugden B, Echols H (1991) DNA looping between the origin of replication of Epstein-Barr virus and its enhancer site: stabilization of an origin complex with Epstein-Barr nuclear antigen 1. Proc Natl Acad Sci USA 88:10870–10874PubMedCentralPubMedCrossRefGoogle Scholar
  193. Sugden B, Warren N (1989) A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol 63(6):2644–2649PubMedCentralPubMedGoogle Scholar
  194. Summers H, Barwell JA, Pfuetzner RA, Edwards AM, Frappier L (1996) Cooperative assembly of EBNA1 on the Epstein-Barr virus latent origin of replication. J Virol 70:1228–1231PubMedCentralPubMedGoogle Scholar
  195. Summers H, Fleming A, Frappier L (1997) Requirements for EBNA1-induced permanganate sensitivity of the Epstein-Barr virus latent origin of DNA replication. J Biol Chem 272:26434–26440PubMedCrossRefGoogle Scholar
  196. Sun X, Barlow EA, Ma S, Hagemeier SR, Duellman SJ, Burgess RR, Tellam J, Khanna R, Kenney SC (2010) Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism. Proc Natl Acad Sci USA 107(7):3146–3151. doi: 10.1073/pnas.0910717107 (0910717107 [pii])
  197. Takahashi Y, Lallemand-Breitenbach V, Zhu J, de The H (2004) PML nuclear bodies and apoptosis. Oncogene 23(16):2819–2824PubMedCrossRefGoogle Scholar
  198. Tellam J, Connolly G, Green KJ, Miles JJ, Moss DJ, Burrows SR, Khanna R (2004) Endogenous presentation of CD8+ T cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. J Exp Med 199(10):1421–1431PubMedCentralPubMedCrossRefGoogle Scholar
  199. Tellam J, Fogg MH, Rist M, Connolly G, Tscharke D, Webb N, Heslop L, Wang F, Khanna R (2007) Influence of translation efficiency of homologous viral proteins on the endogenous presentation of CD8+ T cell epitopes. J Exp Med 204(3):525–532PubMedCentralPubMedCrossRefGoogle Scholar
  200. Tellam J, Smith C, Rist M, Webb N, Cooper L, Vuocolo T, Connolly G, Tscharke DC, Devoy MP, Khanna R (2008) Regulation of protein translation through mRNA structure influences MHC class I loading and T cell recognition. Proc Natl Acad Sci USA 105(27):9319–9324PubMedCentralPubMedCrossRefGoogle Scholar
  201. Tsimbouri P, Drotar ME, Coy JL, Wilson JB (2002) bcl-xL and RAG genes are induced and the response to IL-2 enhanced in EmuEBNA-1 transgenic mouse lymphocytes. Oncogene 21(33):5182–5187PubMedCrossRefGoogle Scholar
  202. Valentine R, Dawson CW, Hu C, Shah KM, Owen TJ, Date KL, Maia SP, Shao J, Arrand JR, Young LS, O’Neil JD (2010) Epstein-Barr virus-encoded EBNA1 inhibits the canonical NF-kappaB pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol Cancer 9:1. doi: 10.1186/1476-4598-9-1 (1476-4598-9-1 [pii])
  203. Van Scoy S, Watakabe I, Krainer AR, Hearing J (2000) Human p32: a coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication. Virology 275:145–157PubMedCrossRefGoogle Scholar
  204. Wang S, Frappier L (2009) Nucleosome assembly proteins bind to Epstein-Barr virus nuclear antigen 1 and affect its functions in DNA replication and transcriptional activation. J Virol 83(22):11704–11714. doi: 10.1128/JVI.00931-09 (JVI.00931-09 [pii])
  205. Wang Y, Finan JE, Middeldorp JM, Hayward SD (1997) P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr virus. Virology 236:18–29PubMedCrossRefGoogle Scholar
  206. Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP (1998) PML is essential for multiple apoptotic pathways. Nat Genet 20(3):266–272PubMedCrossRefGoogle Scholar
  207. Wang L, Tian WD, Xu X, Nie B, Lu J, Liu X, Zhang B, Dong Q, Sunwoo JB, Li G, Li XP (2014) Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells. Cancer 120(3):363–372. doi: 10.1002/cncr.28418 PubMedCrossRefGoogle Scholar
  208. Wilson JB, Bell JL, Levine AJ (1996) Expression of Epstein-Barr virus nuclar antigen-1 induces B cell neoplasia in transgenic mice. EMBO 15:3117–3126Google Scholar
  209. Wood VH, O’Neil JD, Wei W, Stewart SE, Dawson CW, Young LS (2007) Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFbeta signaling pathways. Oncogene 26(28):4135–4147PubMedCrossRefGoogle Scholar
  210. Wu SY, Chiang CM (2007) The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 282(18):13141–13145. doi: 10.1074/jbc.R700001200 (R700001200 [pii])
  211. Wu H, Ceccarelli DFJ, Frappier L (2000) The DNA segregation mechanism of the Epstein-Barr virus EBNA1 protein. EMBO Rep 1:140–144PubMedCentralPubMedCrossRefGoogle Scholar
  212. Wu H, Kapoor P, Frappier L (2002) Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1. J Virol 76(5):2480–2490PubMedCentralPubMedCrossRefGoogle Scholar
  213. Wysokenski DA, Yates JL (1989) Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. J Virol 63:2657–2666PubMedCentralPubMedGoogle Scholar
  214. Yates JL, Camiolo SM (1988) Dissection of DNA replication and enhancer activation functions of Epstein-Barr virus nuclear antigen 1. Cancer Cells 6:197–205Google Scholar
  215. Yates JL, Guan N (1991) Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J Virol 65:483–488PubMedCentralPubMedGoogle Scholar
  216. Yates JL, Warren N, Reisman D, Sugden B (1984) A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA 81:3806–3810PubMedCentralPubMedCrossRefGoogle Scholar
  217. Yates JL, Warren N, Sugden B (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313:812–815PubMedCrossRefGoogle Scholar
  218. Yates JL, Camiolo SM, Bashaw JM (2000) The minimal replicator of Epstein-Barr virus oriP. J Virol 74:4512–4522PubMedCentralPubMedCrossRefGoogle Scholar
  219. Yin Q, Flemington EK (2006) siRNAs against the Epstein Barr virus latency replication factor, EBNA1, inhibit its function and growth of EBV-dependent tumor cells. Virology 346(2):385–393PubMedCrossRefGoogle Scholar
  220. Yin Y, Manoury B, Fahraeus R (2003) Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301(5638):1371–1374PubMedCrossRefGoogle Scholar
  221. Yoshioka M, Crum MM, Sample JT (2008) Autorepression of Epstein-Barr virus nuclear antigen 1 expression by inhibition of pre-mRNA processing. J Virol 82(4):1679–1687PubMedCentralPubMedCrossRefGoogle Scholar
  222. You J (2010) Papillomavirus interaction with cellular chromatin. Biochim Biophys Acta 1799(3–4):192–199. doi: 10.1016/j.bbagrm.2009.09.009 (S1874-9399(09)00114-X [pii])
  223. Zhang M, Coffino P (2004) Repeat sequence of Epstein-Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing. J Biol Chem 279(10):8635–8641. doi: 10.1074/jbc.M310449200M310449200 ([pii])
  224. Zhou J, Snyder AR, Lieberman PM (2009) Epstein-Barr virus episome stability is coupled to a delay in replication timing. J Virol 83(5):2154–2162PubMedCentralPubMedCrossRefGoogle Scholar
  225. Zhou J, Deng Z, Norseen J, Lieberman PM (2010) Regulation of Epstein-Barr virus origin of plasmid replication (OriP) by the S-phase checkpoint kinase Chk2. J Virol 84(10):4979–4987. doi: 10.1128/JVI.01300-09 (JVI.01300-09 [pii])

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Molecular GeneticsUniversity of TorontoTorontoCanada

Personalised recommendations