Advertisement

Infectious Mononucleosis

  • Samantha K. Dunmire
  • Kristin A. Hogquist
  • Henry H. Balfour
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 390)

Abstract

Infectious mononucleosis is a clinical entity characterized by sore throat, cervical lymph node enlargement, fatigue, and fever most often seen in adolescents and young adults and lasting several weeks. It can be caused by a number of pathogens, but this chapter only discusses infectious mononucleosis due to primary Epstein–Barr virus (EBV) infection. EBV is a γ-herpesvirus that infects at least 90 % of the population worldwide. The virus is spread by intimate oral contact among teenagers and young adults. How preadolescents acquire the virus is not known. A typical clinical picture with a positive heterophile test is usually sufficient to make the diagnosis, but heterophile antibodies are not specific and do not develop in some patients. EBV-specific antibody profiles are the best choice for staging EBV infection. In addition to causing acute illness, there can also be long-term consequences as the result of acquisition of the virus. Several EBV-related illnesses occur including certain cancers and autoimmune diseases, as well as complications of primary immunodeficiency in persons with the certain genetic mutations. A major obstacle to understanding these sequelae has been the lack of an efficient animal model for EBV infection, although progress in primate and mouse models has recently been made. Key future challenges are to develop protective vaccines and effective treatment regimens.

Keywords

Natural Killer Cell Human Leukocyte Antigen Infectious Mononucleosis Humanize Mouse Hemophagocytic Lymphohistiocytosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CAEBV

Chronic active Epstein–Barr virus

DC

Dendritic cells

EBNA

Epstein–Barr nuclear antigen

EBV

Epstein–Barr virus

eBL

Endemic Burkitt’s lymphoma

EIA

Enzyme immunoassay

HL

Hodgkin’s lymphoma

HLA

Human leukocyte antigen

HLH

Hemophagocytic lymphohistiocytosis

IFN

Interferon

LCV

Lymphocryptovirus

MHC

Major histocompatibility complex

MS

Multiple sclerosis

NK

Natural killer

NHANES

National Health and Nutrition Examination Survey

NIH

National Institutes of Health

NPC

Nasopharyngeal carcinoma

SAP

Signaling lymphocytic activation molecule-associated protein

VCA

Viral capsid antigen

XLP

X-linked lymphoproliferative disease

References

  1. Abbott RJ, Quinn LL, Leese AM, Scholes HM, Pachnio A, Rickinson AB (2013) CD8+ T cell responses to lytic EBV infection: late antigen specificities as subdominant components of the total response. J Immunol 191:5398–5409. doi: 10.4049/jimmunol.1301629 PubMedCrossRefGoogle Scholar
  2. Adhikary D, Behrends U, Boerschmann H, Pfunder A, Burdach S, Moosmann A, Witter K, Bornkamm GW, Mautner J (2007) Immunodominance of lytic cycle antigens in Epstein-Barr virus-specific CD4+ T cell preparations for therapy. PLoS One 2:e583. doi: 10.1371/journal.pone.0000583 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Alfieri C, Tanner J, Carpentier L, Perpete C, Savoie A, Paradis K, Delage G, and Joncas J (1996) Epstein-Barr virus transmission from a blood donor to an organ transplant recipient with recovery of the same virus strain from the recipient's blood and oropharynx. Blood 87:812–817Google Scholar
  4. Alotaibi S, Kennedy J, Tellier R, Stephens D, Banwell B (2004) Epstein-Barr virus in pediatric multiple sclerosis. JAMA 291:1875–1879. doi: 10.1001/jama.291.15.1875 PubMedCrossRefGoogle Scholar
  5. Ascherio A, Munger KL, Lennette ET, Spiegelman D, Hernan MA, Olek MJ, Hankinson SE, Hunter DJ (2001) Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286:3083–3088. doi: 10.1001/jama.286.24.3083
  6. Ascherio A, Munger KL (2010) Epstein-barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol 5:271–277. doi: 10.1007/s11481-010-9201-3 PubMedCrossRefGoogle Scholar
  7. Azzi T, Lunemann A, Murer A, Ueda S, Beziat V, Malmberg KJ, Staubli G, Gysin C, Berger C, Munz C, Chijioke O, Nadal D (2014) Role for early-differentiated natural killer cells in infectious mononucleosis. Blood 124:2533–2543. doi: 10.1182/blood-2014-01-553024 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Balfour HH Jr (2014) Progress, prospects, and problems in Epstein-Barr virus vaccine development. Curr Opin Virol 6C:1–5. doi: 10.1016/j.coviro.2014.02.005 CrossRefGoogle Scholar
  9. Balfour HH, Jr, Holman CJ, Hokanson KM, Lelonek MM, Giesbrecht JE, White DR, Schmeling DO, Webb CH, Cavert W, Wang DH et al. (2005). A prospective clinical study of Epstein-Barr virus and host interactions during acute infectious mononucleosis. J Infect Dis 192: 1505–1512. doi: 10.1086/491740
  10. Balfour HH Jr, Forte FA, Simpson RB, Zolov DM (1972) Penicillin-related exanthems in infectious mononucleosis identical to those associated with ampicillin. Clin Pediatr 11:417–421CrossRefGoogle Scholar
  11. Balfour HH Jr, Odumade OA, Schmeling DO, Mullan BD, Ed JA, Knight JA, Vezina HE, Thomas W, Hogquist KA (2013a) Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis 207:80–88. doi: 10.1093/infdis/jis646 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Balfour HH Jr, Sifakis F, Sliman JA, Knight JA, Schmeling DO, Thomas W (2013b) Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6–19 years in the United States and factors affecting its acquisition. J Infect Dis 208:1286–1293. doi: 10.1093/infdis/jit321 PubMedCrossRefGoogle Scholar
  13. Banwell B, Krupp L, Kennedy J, Tellier R, Tenembaum S, Ness J, Belman A, Boiko A, Bykova O, Waubant E, Mah JK, Stoian C, Kremenchutzky M, Bardini MR, Ruggieri M, Rensel M, Hahn J, Weinstock-Guttman B, Yeh EA, Farrell K, Freedman M, Iivanainen M, Sevon M, Bhan V, Dilenge ME, Stephens D, Bar-Or A (2007) Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. Lancet Neurol 6:773–781. doi: 10.1016/S1474-4422(07)70196-5 PubMedCrossRefGoogle Scholar
  14. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HW (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447:326–329. doi: 10.1038/nature05762 PubMedCrossRefGoogle Scholar
  15. Bauer G (2001) Simplicity through complexity: immunoblot with recombinant antigens as the new gold standard in Epstein-Barr virus serology. Clin Lab 47:223–230PubMedGoogle Scholar
  16. Beutel K, Gross-Wieltsch U, Wiesel T, Stadt UZ, Janka G, Wagner HJ (2009) Infection of T lymphocytes in Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in children of non-Asian origin. Pediatr Blood Cancer 53:184–190. doi: 10.1002/pbc.22037 PubMedCrossRefGoogle Scholar
  17. Blake N, Haigh T, Shaka’a G, Croom-Carter D, Rickinson A (2000) The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J Immunol 165:7078–7087PubMedCrossRefGoogle Scholar
  18. Borza CM, Hutt-Fletcher LM (2002) Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med 8:594–599. doi: 10.1038/nm0602-594 PubMedCrossRefGoogle Scholar
  19. Brady G, MacArthur GJ, Farrell PJ (2007) Epstein-Barr virus and Burkitt lymphoma. J Clin Pathol 60:1397–1402. doi: 10.1136/jcp.2007.047977 PubMedCentralPubMedGoogle Scholar
  20. Burrows SR, Sculley TB, Misko IS, Schmidt C, Moss DJ (1990) An Epstein-Barr virus-specific cytotoxic T cell epitope in EBV nuclear antigen 3 (EBNA 3). J Exp Med 171:345–349PubMedCrossRefGoogle Scholar
  21. Cannons JL, Tangye SG, Schwartzberg PL (2011) SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol 29:665–705. doi: 10.1146/annurev-immunol-030409-101302 PubMedCrossRefGoogle Scholar
  22. Centers for Disease Control and Prevention (2014) Epstein-Barr virus and infectious mononucleosis. http://www.cdc.gov/epstein-barr/laboratory-testing.html. Accessed 08 Aug 2014
  23. Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, Marcenaro E, Leung CS, Antsiferova O, Landtwing V, Bossart W, Moretta A, Hassan R, Boyman O, Niedobitek G, Delecluse HJ, Capaul R, Munz C (2013) Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep 5:1489–1498. doi: 10.1016/j.celrep.2013.11.041 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Clute SC, Watkin LB, Cornberg M, Naumov YN, Sullivan JL, Luzuriaga K, Welsh RM, Selin LK (2005) Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis. J Clin Invest 115:3602–3612. doi: 10.1172/JCI25078 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Cohen JI, Fauci AS, Varmus H, Nabel GJ (2011) Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med 3:107fs107. doi: 10.1126/scitranslmed.3002878
  26. Cohen JI, Jaffe ES, Dale JK, Pittaluga S, Heslop HE, Rooney CM, Gottschalk S, Bollard CM, Rao VK, Marques A, Burbelo PD, Turk SP, Fulton R, Wayne AS, Little RF, Cairo MS, El-Mallawany NK, Fowler D, Sportes C, Bishop MR, Wilson W, Straus SE (2011b) Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood 117:5835–5849. doi: 10.1182/blood-2010-11-316745 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Condon LM, Cederberg LE, Rabinovitch MD, Liebo RV, Go JC, Delaney AS, Schmeling DO, Thomas W, Balfour HH Jr (2014) Age-specific prevalence of Epstein-Barr virus infection among minnesota children effects of race/ethnicity and family environment. Clin Infect Dis. doi: 10.1093/cid/ciu342 PubMedGoogle Scholar
  28. Connelly KP, DeWitt LD (1994) Neurologic complications of infectious mononucleosis. Pediatr Neurol 10:181–184PubMedCrossRefGoogle Scholar
  29. Crawford DH, Macsween KF, Higgins CD, Thomas R, McAulay K, Williams H, Harrison N, Reid S, Conacher M, Douglas J, Swerdlow AJ (2006) A cohort study among university students: identification of risk factors for Epstein-Barr virus seroconversion and infectious mononucleosis. Clin Infect Dis 43:276–282. doi: 10.1086/505400 PubMedCrossRefGoogle Scholar
  30. Crowcroft NS, Vyse A, Brown DW, Strachan DP (1998) Epidemiology of Epstein-Barr virus infection in pre-adolescent children: application of a new salivary method in Edinburgh, Scotland. J Epidemiol Community Health 52:101–104PubMedCentralPubMedCrossRefGoogle Scholar
  31. DeLorenze GN, Munger KL, Lennette ET, Orentreich N, Vogelman JH, Ascherio A (2006) Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol 63:839–844. doi: 10.1001/archneur.63.6.noc50328
  32. de-The G, Day NE, Geser A, Lavoue MF, Ho JH, Simons MJ, Sohier R, Tukei P, Vonka V, Zavadova H (1975) Sero-epidemiology of the Epstein-Barr virus: preliminary analysis of an international study—a review. IARC scientific publications, pp 3–16Google Scholar
  33. de-The G, Geser A, Day NE, Tukei PM, Williams EH, Beri DP, Smith PG, Dean AG, Bronkamm GW, Feorino P, Henle W (1978) Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 274:756–761Google Scholar
  34. Downey HM, McKinlay CA (1923) Acute lymphadenosis compared with acute lymphatic leukemia. Arch Intern Med 32:82–112CrossRefGoogle Scholar
  35. Dunmire SK, Odumade OA, Porter JL, Reyes-Genere J, Schmeling DO, Bilgic H, Fan D, Baechler EC, Balfour HH Jr, Hogquist KA (2014) Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes. PLoS One 9:e85422. doi: 10.1371/journal.pone.0085422 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Elegheert J, Bracke N, Pouliot P, Gutsche I, Shkumatov AV, Tarbouriech N, Verstraete K, Bekaert A, Burmeister WP, Svergun DI, Lambrecht BN, Vergauwen B, Savvides SN (2012) Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nat Struct Mol Biol 19:938–947. doi: 10.1038/nsmb.2367 PubMedCrossRefGoogle Scholar
  37. Fancke B, Suter M, Hochrein H, O’Keeffe M (2008) M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. Blood 111:150–159. doi: 10.1182/blood-2007-05-089292 PubMedCrossRefGoogle Scholar
  38. Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D, Strowig T, Bougras G, Muller WA, Moretta L, Munz C (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci USA 101:16606–16611. doi: 10.1073/pnas.0407522101 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Figueira-Silva CM, Pereira FE (2004) Prevalence of Epstein-Barr virus antibodies in healthy children and adolescents in Vitoria, State of Espirito Santo, Brazil. Rev Soc Bras Med Trop 37:409–412. doi: 10.1590/S0037-86822004000500008 PubMedCrossRefGoogle Scholar
  40. Fisher BA, Bhalara S (2004) False-positive result provided by rapid heterophile antibody test in a case of acute infection with hepatitis E virus. J Clin Microbiol 42:4411. doi: 10.1128/JCM.42.9.4411.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Flavell KJ, Murray PG (2000) Hodgkin’s disease and the Epstein-Barr virus. Mol Pathol 53:262–269PubMedCentralPubMedCrossRefGoogle Scholar
  42. Gerber P, Walsh JH, Rosenblum EN, Purcell RH (1969) Association of EB-virus infection with the post-perfusion syndrome. Lancet 1:593–595PubMedCrossRefGoogle Scholar
  43. Griffin BD, Gram AM, Mulder A, Van Leeuwen D, Claas FH, Wang F, Ressing ME, Wiertz E (2013) EBV BILF1 evolved to downregulate cell surface display of a wide range of HLA class I molecules through their cytoplasmic tail. J Immunol 190:1672–1684. doi: 10.4049/jimmunol.1102462 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Gu SY, Huang TM, Ruan L, Miao YH, Lu H, Chu CM, Motz M, Wolf H (1995) First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev Biol Stand 84:171–177PubMedGoogle Scholar
  45. Guerrero-Ramos A, Patel M, Kadakia K, Haque T (2014) Performance of the architect EBV antibody panel for determination of Epstein-Barr virus infection stage in immunocompetent adolescents and young adults with clinical suspicion of infectious mononucleosis. Clin Vaccine Immunol 21:817–823. doi: 10.1128/CVI.00754-13 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Hadinoto V, Shapiro M, Greenough TC, Sullivan JL, Luzuriaga K, Thorley-Lawson DA (2008) On the dynamics of acute EBV infection and the pathogenesis of infectious mononucleosis. Blood 111:1420–1427. doi: 10.1182/blood-2007-06-093278 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Hanto DW, Frizzera G, Purtilo DT, Sakamoto K, Sullivan JL, Saemundsen AK, Klein G, Simmons RL, Najarian JS (1981) Clinical spectrum of lymphoproliferative disorders in renal transplant recipients and evidence for the role of Epstein-Barr virus. Cancer Res 41:4253–4261PubMedGoogle Scholar
  48. Hendricks DW, Balfour HH Jr, Dunmire SK, Schmeling DO, Hogquist KA, Lanier LL (2014) Cutting edge: NKG2ChiCD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J Immunol. doi: 10.4049/jimmunol.1303211 PubMedCentralGoogle Scholar
  49. Hendry BM, Longmore JM (1982) Systemic lupus erythematosus presenting as infectious mononucleosis with a false positive monospot test. Lancet 1:455PubMedCrossRefGoogle Scholar
  50. Henle G, Henle W, Clifford P, Diehl V, Kafuko GW, Kirya BG, Klein G, Morrow RH, Munube GM, Pike P, Tukei PM, Ziegler JL (1969) Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J Natl Cancer Inst 43:1147–1157PubMedGoogle Scholar
  51. Henle W, Henle G, Andersson J, Ernberg I, Klein G, Horwitz CA, Marklund G, Rymo L, Wellinder C, Straus SE (1987) Antibody responses to Epstein-Barr virus-determined nuclear antigen (EBNA)-1 and EBNA-2 in acute and chronic Epstein-Barr virus infection. Proc Natl Acad Sci USA 84:570–574PubMedCentralPubMedCrossRefGoogle Scholar
  52. Hess RD (2004) Routine Epstein-Barr virus diagnostics from the laboratory perspective: still challenging after 35 years. J Clin Microbiol 42:3381–3387. doi: 10.1128/JCM.42.8.3381-3387.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Hesse J, Ibsen KK, Krabbe S, Uldall P (1983) Prevalence of antibodies to Epstein-Barr virus (EBV) in childhood and adolescence in Denmark. Scand J Infect Dis 15:335–338PubMedCrossRefGoogle Scholar
  54. Hille A, Klein K, Baumler S, Grasser FA, Mueller-Lantzsch N (1993) Expression of Epstein-Barr virus nuclear antigen 1,2A and 2B in the baculovirus expression system: serological evaluation of human antibodies to these proteins. J Med Virol 39:233–241PubMedCrossRefGoogle Scholar
  55. Hislop AD, Palendira U, Leese AM, Arkwright PD, Rohrlich PS, Tangye SG, Gaspar HB, Lankester AC, Moretta A, Rickinson AB (2010) Impaired Epstein-Barr virus-specific CD8+ T-cell function in X-linked lymphoproliferative disease is restricted to SLAM family-positive B-cell targets. Blood 116:3249–3257. doi: 10.1182/blood-2009-09-238832 PubMedCrossRefGoogle Scholar
  56. Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617. doi: 10.1146/annurev.immunol.25.022106.141553 PubMedCrossRefGoogle Scholar
  57. Hjalgrim H, Askling J, Sorensen P, Madsen M, Rosdahl N, Storm HH, Hamilton-Dutoit S, Eriksen LS, Frisch M, Ekbom A, Melbye M (2000) Risk of Hodgkin’s disease and other cancers after infectious mononucleosis. J Natl Cancer Inst 92:1522–1528PubMedCrossRefGoogle Scholar
  58. Hjalgrim H, Friborg J, Melbye M (2007) The epidemiology of EBV and its association with malignant disease. In: Arvin A et al. (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. CambridgeGoogle Scholar
  59. Hoagland RJ (1955) The transmission of infectious mononucleosis. Am J Med Sci 229:262–272PubMedCrossRefGoogle Scholar
  60. Hoagland RJ, Henson HM (1957) Splenic rupture in infectious mononucleosis. Ann Intern Med 46:1184–1191PubMedCrossRefGoogle Scholar
  61. Holman CJ, Karger AB, Mullan BD, Brundage RC, Balfour HH Jr (2012) Quantitative Epstein-Barr virus shedding and its correlation with the risk of post-transplant lymphoproliferative disorder. Clin Transplant 26:741–747. doi: 10.1111/j.1399-0012.2012.01608.x PubMedCentralPubMedCrossRefGoogle Scholar
  62. Horwitz CA, Henle W, Henle G, Goldfarb M, Kubic P, Gehrz RC, Balfour HH Jr, Fleisher GR, Krivit W (1981) Clinical and laboratory evaluation of infants and children with Epstein-Barr virus-induced infectious mononucleosis: report of 32 patients (aged 10–48 months). Blood 57:933–938PubMedGoogle Scholar
  63. Horwitz CA, Henle W, Henle G, Penn G, Hoffman N, Ward PC (1979) Persistent falsely positive rapid tests for infectious mononucleosis. Report of five cases with four-six-year follow-up data. Am J Clin Pathol 72:807–811PubMedGoogle Scholar
  64. Hutt-Fletcher LM (2007) Epstein-Barr virus entry. J Virol 81:7825–7832. doi: 10.1128/JVI.00445-07 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Hwang AE, Hamilton AS, Cockburn MG, Ambinder R, Zadnick J, Brown EE, Mack TM, Cozen W (2012) Evidence of genetic susceptibility to infectious mononucleosis: a twin study. Epidemiol Infect 140:2089–2095. doi: 10.1017/S0950268811002457 PubMedCrossRefGoogle Scholar
  66. Iizasa H, Nanbo A, Nishikawa J, Jinushi M, Yoshiyama H (2012) Epstein-Barr virus (EBV)-associated gastric carcinoma. Viruses 4:3420–3439PubMedCentralPubMedCrossRefGoogle Scholar
  67. Janka GE (2012) Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med 63:233–246. doi: 10.1146/annurev-med-041610-134208 PubMedCrossRefGoogle Scholar
  68. Jenson HB (2000) Acute complications of Epstein-Barr virus infectious mononucleosis. Curr Opin Pediatr 12:263–268PubMedCrossRefGoogle Scholar
  69. Jordan MB, Allen CE, Weitzman S, Filipovich AH, McClain KL (2011) How i treat hemophagocytic lymphohistiocytosis. Blood 118:4041–4052. doi: 10.1182/blood-2011-03-278127 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Kawaguchi H, Miyashita T, Herbst H, Niedobitek G, Asada M, Tsuchida M, Hanada R, Kinoshita A, Sakurai M, Kobayashi N et al (1993) Epstein-Barr virus-infected T lymphocytes in Epstein-Barr virus-associated hemophagocytic syndrome. J Clin Invest 92:1444–1450. doi: 10.1172/JCI116721 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Kimura H, Hoshino Y, Kanegane H, Tsuge I, Okamura T, Kawa K, Morishima T (2001) Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood 98:280–286PubMedCrossRefGoogle Scholar
  72. Kimura H, Morishima T, Kanegane H, Ohga S, Hoshino Y, Maeda A, Imai S, Okano M, Morio T, Yokota S, Tsuchiya S, Yachie A, Imashuku S, Kawa K, Wakiguchi H, Japanese Association for Research on Epstein-Barr V, Related D (2003) Prognostic factors for chronic active Epstein-Barr virus infection. J Infect Dis 187:527–533. doi: 10.1086/367988
  73. Krabbe S, Hesse J, Uldall P (1981) Primary Epstein-Barr virus infection in early childhood. Arch Dis Child 56:49–52PubMedCentralPubMedCrossRefGoogle Scholar
  74. Lang DJ, Garruto RM, Gajdusek DC (1977) Early acquisition of cytomegalovirus and Epstein-Barr virus antibody in several isolated Melanesian populations. Am J Epidemiol 105:480–487PubMedGoogle Scholar
  75. Leskowitz R, Fogg MH, Zhou XY, Kaur A, Silveira EL, Villinger F, Lieberman PM, Wang F, Ertl HC (2014) Adenovirus-based vaccines against rhesus lymphocryptovirus EBNA-1 induce expansion of specific CD8+ and CD4+ T cells in persistently infected rhesus macaques. J Virol 88:4721–4735. doi: 10.1128/JVI.03744-13 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Leung C, Chijioke O, Gujer C, Chatterjee B, Antsiferova O, Landtwing V, McHugh D, Raykova A, Munz C (2013) Infectious diseases in humanized mice. Eur J Immunol 43:2246–2254. doi: 10.1002/eji.201343815 PubMedCrossRefGoogle Scholar
  77. Levin LI, Munger KL, Rubertone MV, Peck CA, Lennette ET, Spiegelman D, Ascherio A. (2005). Temporal relationship between elevation of epstein-barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293: 2496–2500. doi: 10.1001/jama.293.20.2496
  78. Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A (2010) Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol 67:824–830. doi: 10.1002/ana.21978 PubMedCentralPubMedGoogle Scholar
  79. Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616–12621PubMedCentralPubMedCrossRefGoogle Scholar
  80. Long HM, Chagoury OL, Leese AM, Ryan GB, James E, Morton LT, Abbott RJ, Sabbah S, Kwok W, Rickinson AB (2013) MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med 210:933–949. doi: 10.1084/jem.20121437 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Lopez-Verges S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, York VA, Houchins JP, Miller S, Kang SM, Norris PJ, Nixon DF, Lanier LL (2011) Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci USA 108:14725–14732. doi: 10.1073/pnas.1110900108 PubMedCentralPubMedCrossRefGoogle Scholar
  82. Lunemann A, Vanoaica LD, Azzi T, Nadal D, Munz C (2013) A distinct subpopulation of human NK cells restricts B cell transformation by EBV. J Immunol 191:4989–4995. doi: 10.4049/jimmunol.1301046 PubMedCrossRefGoogle Scholar
  83. Luzuriaga K, Sullivan JL (2010) Infectious mononucleosis. N Engl J Med 362:1993–2000. doi: 10.1056/NEJMcp1001116 PubMedCrossRefGoogle Scholar
  84. Massa J, Munger KL, O’Reilly EJ, Falk KI, Ascherio A (2007) Plasma titers of antibodies against Epstein-Barr virus BZLF1 and risk of multiple sclerosis. Neuroepidemiology 28:214–215. doi: 10.1159/000108113 PubMedCrossRefGoogle Scholar
  85. Melbye M, Ebbesen P, Levine PH, Bennike T (1984) Early primary infection and high Epstein-Barr virus antibody titers in Greenland Eskimos at high risk for nasopharyngeal carcinoma. Int J Cancer 34:619–623PubMedCrossRefGoogle Scholar
  86. Menasche G, Feldmann J, Fischer A, de Saint Basile G (2005) Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis. Immunol Rev 203:165–179. doi: 10.1111/j.0105-2896.2005.00224.x PubMedCrossRefGoogle Scholar
  87. Merlo A, Turrini R, Trento C, Zanovello P, Dolcetti R, Rosato A (2010) Impact of gamma-chain cytokines on EBV-specific T cell cultures. J Transl Med 8:121. doi: 10.1186/1479-5876-8-121 PubMedCentralPubMedCrossRefGoogle Scholar
  88. Morris MC, Edmunds WJ (2002) The changing epidemiology of infectious mononucleosis? J Infect 45:107–109. doi: 10.1053/jinf.2002.1022 PubMedCrossRefGoogle Scholar
  89. Nijie R, Bell AI, Jia H, Croom-Carter D, Chaganti S, Hislop AD, Whittle H, Rickinson AB (2009). The effects of acute malaria on Epstein-Barr virus (EBV) load and EBV-specific T cell immunity in Gambian children. J Infect Dis 199:31–38. doi: 10.1086/594373
  90. Nystad TW, Myrmel H (2007) Prevalence of primary versus reactivated Epstein-Barr virus infection in patients with VCA IgG-, VCA IgM- and EBNA-1-antibodies and suspected infectious mononucleosis. J Clin Virol 38:292–297. doi: 10.1016/j.jcv.2007.01.006 PubMedCrossRefGoogle Scholar
  91. Odumade OA, Hogquist KA, Balfour HH Jr (2011) Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev 24:193–209. doi: 10.1128/cmr.00044-10 PubMedCentralPubMedCrossRefGoogle Scholar
  92. Odumade OA, Knight JA, Schmeling DO, Masopust D, Balfour HH Jr, Hogquist KA (2012) Primary Epstein-Barr virus infection does not erode preexisting CD8(+) T cell memory in humans. J Exp Med 209:471–478. doi: 10.1084/jem.20112401 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Ohashi M, Fogg MH, Orlova N, Quink C, Wang F (2012) An Epstein-Barr virus encoded inhibitor of colony stimulating factor-1 signaling is an important determinant for acute and persistent EBV infection. PLoS Pathog 8:e1003095. doi: 10.1371/journal.ppat.1003095 PubMedCentralPubMedCrossRefGoogle Scholar
  94. Okuno K, Takashima K, Kanai K, Ohashi M, Hyuga R, Sugihara H, Kuwamoto S, Kato M, Sano H, Sairenji T, Kanzaki S, Hayashi K (2010) Epstein-Barr virus can infect rabbits by the intranasal or peroral route: an animal model for natural primary EBV infection in humans. J Med Virol 82:977–986. doi: 10.1002/jmv.21597 PubMedCrossRefGoogle Scholar
  95. Pakpoor J, Disanto G, Gerber JE, Dobson R, Meier UC, Giovannoni G, Ramagopalan SV (2013) The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scler 19:162–166. doi: 10.1177/1352458512449682 PubMedCrossRefGoogle Scholar
  96. Palendira U, Low C, Chan A, Hislop AD, Ho E, Phan TG, Deenick E, Cook MC, Riminton DS, Choo S, Loh R, Alvaro F, Booth C, Gaspar HB, Moretta A, Khanna R, Rickinson AB, Tangye SG (2011) Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP. PLoS Biol 9:e1001187. doi: 10.1371/journal.pbio.1001187 PubMedCentralPubMedCrossRefGoogle Scholar
  97. Pappworth IY, Wang EC, Rowe M (2007) The switch from latent to productive infection in epstein-barr virus-infected B cells is associated with sensitization to NK cell killing. J Virol 81:474–482. doi: 10.1128/JVI.01777-06 PubMedCentralPubMedCrossRefGoogle Scholar
  98. Parvaneh N, Filipovich AH, Borkhardt A (2013) Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases. Br J Haematol 162:573–586. doi: 10.1111/bjh.12422 PubMedCrossRefGoogle Scholar
  99. Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N (1995) Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med 333:693–698. doi: 10.1056/NEJM199509143331103 PubMedCrossRefGoogle Scholar
  100. Pender MP, Csurhes PA, Smith C, Beagley L, Hooper KD, Raj M, Coulthard A, Burrows SR, Khanna R (2014) Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult Scler. doi: 10.1177/1352458514521888 Google Scholar
  101. Phillips GM (1972) False-positive monospot test result in rubella. JAMA 222:585PubMedCrossRefGoogle Scholar
  102. Piriou E, Asito AS, Sumba PO, Fiore N, Middeldorp JM, Moormann AM, Ploutz-Snyder R, Rochford R (2012) Early age at time of primary Epstein-Barr virus infection results in poorly controlled viral infection in infants from Western Kenya: clues to the etiology of endemic Burkitt lymphoma. J Infect Dis 205:906–913. doi: 10.1093/infdis/jir872 PubMedCentralPubMedCrossRefGoogle Scholar
  103. Pohl D, Krone B, Rostasy K, Kahler E, Brunner E, Lehnert M, Wagner HJ, Gartner J, Hanefeld F (2006) High seroprevalence of Epstein-Barr virus in children with multiple sclerosis. Neurology 67:2063–2065. doi: 10.1212/01.wnl.0000247665.94088.8d PubMedCrossRefGoogle Scholar
  104. Putukian M, O’Connor FG, Stricker P, McGrew C, Hosey RG, Gordon SM, Kinderknecht J, Kriss V, Landry G (2008) Mononucleosis and athletic participation: an evidence-based subject review. Clin J Sport Med 18:309–315. doi: 10.1097/JSM.0b013e31817e34f8 PubMedCrossRefGoogle Scholar
  105. Quintanilla-Martinez L, Kumar S, Fend F, Reyes E, Teruya-Feldstein J, Kingma DW, Sorbara L, Raffeld M, Straus SE, Jaffe ES (2000) Fulminant EBV(+) T-cell lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood 96:443–451PubMedGoogle Scholar
  106. Raab-Traub N (2002) Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol 12:431–441PubMedCrossRefGoogle Scholar
  107. Raab-Traub N, Flynn K (1986) The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47:883–889PubMedCrossRefGoogle Scholar
  108. Ramer PC, Chijioke O, Meixlsperger S, Leung CS, Munz C (2011) Mice with human immune system components as in vivo models for infections with human pathogens. Immunol Cell Biol 89:408–416. doi: 10.1038/icb.2010.151 PubMedCentralPubMedCrossRefGoogle Scholar
  109. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, Galicier L, Le Deist F, Rieux-Laucat F, Revy P, Fischer A, de Saint Basile G, Latour S (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444:110–114. doi: 10.1038/nature05257 PubMedCrossRefGoogle Scholar
  110. Robinson RG (1988) Abdominal complications of infectious mononucleosis. J Am Board Fam Pract 1:207–210PubMedGoogle Scholar
  111. Rostgaard K, Wohlfahrt J, Hjalgrim H (2014) A genetic basis for infectious mononucleosis: evidence from a family study of hospitalized cases in Denmark. Clin Infect Dis. doi: 10.1093/cid/ciu204 PubMedGoogle Scholar
  112. Rubicz R, Yolken R, Drigalenko E, Carless MA, Dyer TD, Bauman L, Melton PE, Kent JW Jr, Harley JB, Curran JE, Johnson MP, Cole SA, Almasy L, Moses EK, Dhurandhar NV, Kraig E, Blangero J, Leach CT, Goring HH (2013) A genome-wide integrative genomic study localizes genetic factors influencing antibodies against Epstein-Barr virus nuclear antigen 1 (EBNA-1). PLoS Genet 9:e1003147. doi: 10.1371/journal.pgen.1003147 PubMedCentralPubMedCrossRefGoogle Scholar
  113. Sadoff L, Goldsmith O (1971) False-positive infectious mononucleosis spot test in pancreatic carcinoma. JAMA 218:1297–1298PubMedCrossRefGoogle Scholar
  114. Sashihara J, Hoshino Y, Bowman JJ, Krogmann T, Burbelo PD, Coffield VM, Kamrud K, Cohen JI (2011) Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge. PLoS Pathog 7:e1002308. doi: 10.1371/journal.ppat.1002308 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Schooley RT, Carey RW, Miller G, Henle W, Eastman R, Mark EJ, Kenyon K, Wheeler EO, Rubin RH (1986) Chronic Epstein-Barr virus infection associated with fever and interstitial pneumonitis. Clinical and serologic features and response to antiviral chemotherapy. Ann Intern Med 104:636–643PubMedCrossRefGoogle Scholar
  116. Schubert J, Zens W, Weissbrich B (1998) Comparative evaluation of the use of immunoblots and of IgG avidity assays as confirmatory tests for the diagnosis of acute EBV infections. J Clin Virol 11:161–172PubMedCrossRefGoogle Scholar
  117. Shapiro RS, McClain K, Frizzera G, Gajl-Peczalska KJ, Kersey JH, Blazar BR, Arthur DC, Patton DF, Greenberg JS, Burke B et al (1988) Epstein-Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. Blood 71:1234–1243PubMedGoogle Scholar
  118. Shim AH, Chang RA, Chen X, Longnecker R, He X (2012) Multipronged attenuation of macrophage-colony stimulating factor signaling by Epstein-Barr virus BARF1. Proc Natl Acad Sci USA 109:12962–12967. doi: 10.1073/pnas.1205309109 PubMedCentralPubMedCrossRefGoogle Scholar
  119. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H, Yasukawa M, Ishikawa F (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci USA 107:13022–13027. doi: 10.1073/pnas.1000475107
  120. Slyker JA, Casper C, Tapia K, Richardson B, Bunts L, Huang ML, Maleche-Obimbo E, Nduati R, John-Stewart G (2013) Clinical and virologic manifestations of primary Epstein-Barr virus (EBV) infection in Kenyan infants born to HIV-infected women. J Infect Dis 207:1798–1806. doi: 10.1093/infdis/jit093 PubMedCentralPubMedCrossRefGoogle Scholar
  121. Sokal EM, Hoppenbrouwers K, Vandermeulen C, Moutschen M, Leonard P, Moreels A, Haumont M, Bollen A, Smets F, Denis M (2007) Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis 196:1749–1753. doi: 10.1086/523813 PubMedCrossRefGoogle Scholar
  122. Sprunt TP, Evans FA (1920) Mononuclear leucocytosis in reaction to acute infections (“infectious mononucleosis”). Johns Hopkins Hosp Bull 31:410–417Google Scholar
  123. Strautins K, Tschochner M, James I, Choo L, Dunn DS, Pedrini M, Kermode A, Carroll W, Nolan D (2014) Combining HLA-DR risk alleles and anti-Epstein-Barr virus antibody profiles to stratify multiple sclerosis risk. Mult Scler 20:286–294. doi: 10.1177/1352458513498829 PubMedCrossRefGoogle Scholar
  124. Strowig T, Brilot F, Arrey F, Bougras G, Thomas D, Muller WA, Munz C (2008) Tonsilar NK cells restrict B cell transformation by the Epstein-Barr virus via IFN-gamma. PLoS Pathog 4:e27. doi: 10.1371/journal.ppat.0040027 PubMedCentralPubMedCrossRefGoogle Scholar
  125. Strowig T, Chijioke O, Carrega P, Arrey F, Meixlsperger S, Ramer PC, Ferlazzo G, Munz C (2010) Human NK cells of mice with reconstituted human immune system components require preactivation to acquire functional competence. Blood 116:4158–4167. doi: 10.1182/blood-2010-02-270678 PubMedCentralPubMedCrossRefGoogle Scholar
  126. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, Koo G, Rice CM, Young JW, Chadburn A, Cohen JI, Munz C (2009) Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 206:1423–1434. doi: 10.1084/jem.20081720 PubMedCentralPubMedCrossRefGoogle Scholar
  127. Sumaya CV, Ench Y (1986) Epstein-Barr virus infections in families: the role of children with infectious mononucleosis. J Infect Dis 154:842–850PubMedCrossRefGoogle Scholar
  128. Sumaya CV, Henle W, Henle G, Smith MH, LeBlanc D (1975) Seroepidemiologic study of Epstein-Barr virus infections in a rural community. J Infect Dis 131:403–408PubMedCrossRefGoogle Scholar
  129. Sundstrom P, Juto P, Wadell G, Hallmans G, Svenningsson A, Nystrom L, Dillner J, Forsgren L (2004) An altered immune response to Epstein-Barr virus in multiple sclerosis: a prospective study. Neurology 62:2277–2282Google Scholar
  130. Svedmyr E, Ernberg I, Seeley J, Weiland O, Masucci G, Tsukuda K, Szigeti R, Masucci MG, Blomogren H, Berthold W (1984) Virologic, immunologic, and clinical observations on a patient during the incubation, acute, and convalescent phases of infectious mononucleosis. Clin Immunol Immunopathol 30:437–450PubMedCrossRefGoogle Scholar
  131. Takashima K, Ohashi M, Kitamura Y, Ando K, Nagashima K, Sugihara H, Okuno K, Sairenji T, Hayashi K (2008) A new animal model for primary and persistent Epstein-Barr virus infection: human EBV-infected rabbit characteristics determined using sequential imaging and pathological analysis. J Med Virol 80:455–466. doi: 10.1002/jmv.21102 PubMedCrossRefGoogle Scholar
  132. Takeuchi K, Tanaka-Taya K, Kazuyama Y, Ito YM, Hashimoto S, Fukayama M, Mori S (2006) Prevalence of Epstein-Barr virus in Japan: trends and future prediction. Pathol Int 56:112–116. doi: 10.1111/j.1440-1827.2006.01936.x PubMedCrossRefGoogle Scholar
  133. Tynell E, Aurelius E, Brandell A, Julander I, Wood M, Yao QY, Rickinson A, Akerlund B, Andersson J (1996) Acyclovir and prednisolone treatment of acute infectious mononucleosis: a multicenter, double-blind, placebo-controlled study. J Infect Dis 174:324–331PubMedCrossRefGoogle Scholar
  134. Venkitaraman AR, Lenoir GM, John TJ (1985) The seroepidemiology of infection due to Epstein-Barr virus in southern India. J Med Virol 15:11–16PubMedCrossRefGoogle Scholar
  135. Wang F (2013) Nonhuman primate models for Epstein-Barr virus infection. Curr Opin Virol 3:233–237. doi: 10.1016/j.coviro.2013.03.003 PubMedCentralPubMedCrossRefGoogle Scholar
  136. Wang X, Kenyon WJ, Li Q, Mullberg J, Hutt-Fletcher LM (1998) Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol 72:5552–5558PubMedCentralPubMedGoogle Scholar
  137. Warner HB, Carp RI (1981) Multiple sclerosis and Epstein-Barr virus. Lancet 2:1290PubMedCrossRefGoogle Scholar
  138. White LR, Karofsky PS (1985) Review of the clinical manifestations, laboratory findings, and complications of infectious mononucleosis. Wis Med J 84:19–25PubMedGoogle Scholar
  139. Williams H, McAulay K, Macsween KF, Gallacher NJ, Higgins CD, Harrison N, Swerdlow AJ, Crawford DH (2005) The immune response to primary EBV infection: a role for natural killer cells. Br J Haematol 129:266–274. doi: 10.1111/j.1365-2141.2005.05452.x PubMedCrossRefGoogle Scholar
  140. Yager EJ, Szaba FM, Kummer LW, Lanzer KG, Burkum CE, Smiley ST, Blackman MA (2009) Gamma-herpesvirus-induced protection against bacterial infection is transient. Viral Immunol 22:67–72. doi: 10.1089/vim.2008.0086 PubMedCentralPubMedCrossRefGoogle Scholar
  141. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Honda M, Yamamoto N, Fujiwara S (2008) A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 198:673–682. doi: 10.1086/590502 PubMedCrossRefGoogle Scholar
  142. Zhao F, Cannons JL, Dutta M, Griffiths GM, Schwartzberg PL (2012) Positive and negative signaling through SLAM receptors regulate synapse organization and thresholds of cytolysis. Immunity 36:1003–1016. doi: 10.1016/j.immuni.2012.05.017 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Samantha K. Dunmire
    • 1
  • Kristin A. Hogquist
    • 1
  • Henry H. Balfour
    • 2
  1. 1.Center for ImmunologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Laboratory Medicine and Pathology, Department of PediatricsUniversity of Minnesota, University of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations