EBV and Autoimmunity

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 390)


Although a role of EBV in autoimmunity is biologically plausible and evidence of altered immune responses to EBV is abundant in several autoimmune diseases, inference on causality requires the determination that disease risk is higher in individuals infected with EBV than in those uninfected and that in the latter it increases following EBV infection. This determination has so far been possible only for multiple sclerosis (MS) and, to some extent, for systemic lupus erythematosus (SLE), whereas evidence is either lacking or not supportive for other autoimmune conditions. In this chapter, we present the main epidemiological findings that justify the conclusion that EBV is a component cause of MS and SLE and possible mechanisms underlying these effects.


Autoimmunity Epidemiology Multiple sclerosis Systemic lupus Erythematosus Risk factors 





Central nervous system


Cerebrospinal fluid


Department of defense serum repository


Epstein–Barr virus-encoded small RNAs


Epstein–Barr virus nuclear antigen


Epstein–Barr virus


Human leukocyte antigen


Infectious mononucleosis


Multiple sclerosis


Odds ratio


Systemic lupus erythematosus


Epstein–Barr virus viral capsid antigen


  1. Alotaibi S, Kennedy J, Tellier R, Stephens D, Banwell B (2004) Epstein-Barr virus in pediatric multiple sclerosis. JAMA 291(15):1875–1879PubMedCrossRefGoogle Scholar
  2. Angelini DF, Serafini B, Piras E, Severa M, Coccia EM, Rosicarelli B, Ruggieri S, Gasperini C, Buttari F, Centonze D, Mechelli R, Salvetti M, Borsellino G, Aloisi F, Battistini L (2013) Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog 9(4):e1003220PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, Harley JB (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349(16):1526–1533PubMedCrossRefGoogle Scholar
  4. Armstrong DL, Zidovetzki R, Alarcon-Riquelme ME, Tsao BP, Criswell LA, Kimberly RP, Harley JB, Sivils KL, Vyse TJ, Gaffney PM, Langefeld CD, Jacob CO (2014) GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes Immun 15(6):347–354PubMedCentralPubMedCrossRefGoogle Scholar
  5. Ascherio A, Bar-Or A (2010) EBV and brain matter(s)? Neurology 74:1092–1095PubMedCrossRefGoogle Scholar
  6. Ascherio A, Munger KL (2007a) Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 61(4):288–299PubMedCrossRefGoogle Scholar
  7. Ascherio A, Munger KL (2007b) Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann Neurol 61(6):504–513PubMedCrossRefGoogle Scholar
  8. Ascherio A, Munger KL, Lennette ET, Spiegelman D, Hernán MA, Olek MJ, Hankinson SE, Hunter DJ (2001) Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286(24):3083–3088PubMedCrossRefGoogle Scholar
  9. Ascherio A, Munger KL, Simon KC (2010) Vitamin D and multiple sclerosis. Lancet Neurol 9(6):599–612PubMedCrossRefGoogle Scholar
  10. Balfour HH Jr, Odumade OA, Schmeling DO, Mullan BD, Ed JA, Knight JA, Vezina HE, Thomas W, Hogquist KA (2013) Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis 207(1):80–88PubMedCentralPubMedCrossRefGoogle Scholar
  11. Banwell B, Ghezzi A, Bar-Or A, Mikaeloff Y, Tardieu M (2007a) Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions. Lancet Neurol 6(10):887–902PubMedCrossRefGoogle Scholar
  12. Banwell B, Krupp L, Kennedy J, Tellier R, Tenembaum S, Ness J, Belman A, Boiko A, Bykova O, Waubant E, Mah JK, Stoian C, Kremenchutzky M, Bardini MR, Ruggieri M, Rensel M, Hahn J, Weinstock-Guttman B, Yeh EA, Farrell K, Freedman M, Iivanainen M, Sevon M, Bhan V, Dilenge ME, Stephens D, Bar-Or A (2007b) Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. Lancet Neurol 6(9):773–781PubMedCrossRefGoogle Scholar
  13. Beasley RP, Hwang LY, Lin CC, Chien CS (1981) Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22,707 men in Taiwan. Lancet 2(8256):1129–1133PubMedCrossRefGoogle Scholar
  14. Bech E, Lycke J, Gadeberg P, Hansen HJ, Malmestrom C, Andersen O, Christensen T, Ekholm S, Haahr S, Hollsberg P, Bergstrom T, Svennerholm B, Jakobsen J (2002) A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS. Neurology 58(1):31–36PubMedCrossRefGoogle Scholar
  15. Buljevac D, van Doornum GJ, Flach HZ, Groen J, Osterhaus AD, Hop W, van Doorn PA, van der Meche FG, Hintzen RQ (2005) Epstein-Barr virus and disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 76(10):1377–1381PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cooper GS, Dooley MA, Treadwell EL, St Clair EW, Gilkeson GS (2002) Risk factors for development of systemic lupus erythematosus: allergies, infections, and family history. J Clin Epidemiol 55(10):982–989PubMedCrossRefGoogle Scholar
  17. Costenbader KH, Karlson EW (2006) Epstein-Barr virus and rheumatoid arthritis: is there a link? Arthritis Res Ther 8(1):204PubMedCentralPubMedCrossRefGoogle Scholar
  18. Davidson A, Diamond B (2001) Autoimmune diseases. N Engl J Med 345(5):340–350PubMedCrossRefGoogle Scholar
  19. De Jager PL, Simon KC, Munger KL, Rioux JD, Hafler DA, Ascherio A (2008) Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology 70(13 Pt 2):1113–1118PubMedCrossRefGoogle Scholar
  20. DeLorenze GN, Munger KL, Lennette E, Orentreich N, Vogelman J, Ascherio A (2006) Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol 63(6):839–844PubMedCrossRefGoogle Scholar
  21. Disanto G, Hall C, Lucas R, Ponsonby AL, Berlanga-Taylor AJ, Giovannoni G, Ramagopalan SV, The Ausimmune Investigator Group (2013) Assessing interactions between HLA-DRB1*15 and infectious mononucleosis on the risk of multiple sclerosis. Multiple Sclerosis J 19(10):1355–1358CrossRefGoogle Scholar
  22. Evans AS, Rothfield NF, Niederman JC (1971) Raised antibody titres to E.B. virus in systemic lupus erythematosus. Lancet 1(7691):167–168PubMedCrossRefGoogle Scholar
  23. Farrell RA, Antony D, Wall GR, Clark DA, Fisniku L, Swanton J, Khaleeli Z, Schmierer K, Miller DH, Giovannoni G (2009) Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI. Neurology 73(1):32–38PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ferraccioli G, Tolusso B (2007) Infections, B cell receptor activation and autoimmunity: different check-point impairments lead to autoimmunity, clonal B cell expansion and fibrosis in different immunological settings. Autoimmun Rev 7(2):109–113PubMedCrossRefGoogle Scholar
  25. Fox RJ, Cree BA, De Seze J, Gold R, Hartung HP, Jeffery D, Kappos L, Kaufman M, Montalban X, Weinstock-Guttman B, Anderson B, Natarajan A, Ticho B, Duda P (2014) MS disease activity in RESTORE: a randomized 24-week natalizumab treatment interruption study. Neurology 82(17):1491–1498PubMedCentralPubMedCrossRefGoogle Scholar
  26. Friedman JE, Zabriskie JB, Plank C, Ablashi D, Whitman J, Shahan B, Edgell R, Shieh M, Rapalino O, Zimmerman R, Sheng D (2005) A randomized clinical trial of valacyclovir in multiple sclerosis. Multiple Sclerosis J 11(3):286–295CrossRefGoogle Scholar
  27. Gale CR, Martyn CN (1995) Migrant studies in multiple sclerosis. Prog Neurobiol 47:425–448PubMedCrossRefGoogle Scholar
  28. Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402(6759):255–262PubMedCrossRefGoogle Scholar
  29. Gronen F, Ruprecht K, Weissbrich B, Klinker E, Kroner A, Hofstetter HH, Rieckmann P (2006) Frequency analysis of HLA-B7-restricted Epstein-Barr virus-specific cytotoxic T lymphocytes in patients with multiple sclerosis and healthy controls. J Neuroimmunol 180(1–2):185–192PubMedCrossRefGoogle Scholar
  30. Gross AJ, Hochberg D, Rand WM, Thorley-Lawson DA (2005) EBV and systemic lupus erythematosus: a new perspective. J Immunol 174(11):6599–6607PubMedCrossRefGoogle Scholar
  31. Hanlon P, Avenell A, Aucott L, Vickers MA (2014) Systematic review and meta-analysis of the sero-epidemiological association between Epstein-Barr virus and systemic lupus erythematosus. Arthritis Res Ther 16(1):R3PubMedCentralPubMedCrossRefGoogle Scholar
  32. Harley JB, James JA (1999) Epstein-Barr virus infection may be an environmental risk factor for systemic lupus erythematosus in children and teenagers. Arthritis Rheum 42(8):1782–1783PubMedCrossRefGoogle Scholar
  33. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688PubMedCrossRefGoogle Scholar
  34. Hollsberg P, Hansen HJ, Haahr S (2003) Altered CD8+ T cell responses to selected Epstein-Barr virus immunodominant epitopes in patients with multiple sclerosis. Clin Exp Immunol 132:137–143PubMedCentralPubMedCrossRefGoogle Scholar
  35. Holmoy T, Vartdal F (2004) Cerebrospinal fluid T cells from multiple sclerosis patients recognize autologous Epstein-Barr virus-transformed B cells. J Neurovirol 10(1):52–56PubMedCrossRefGoogle Scholar
  36. Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K (2009) Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. J Exp Med 206(10):2091–2099PubMedCentralPubMedCrossRefGoogle Scholar
  37. James JA, Mamula MJ, Harley JB (1994) Sequential autoantigenic determinants of the small nuclear ribonucleoprotein Sm D shared by human lupus autoantibodies and MRL lpr/lpr antibodies. Clin Exp Immunol 98(3):419–426PubMedCentralPubMedCrossRefGoogle Scholar
  38. James JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJA, Harley JB (1997) An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 100(12):3019–3026PubMedCentralPubMedCrossRefGoogle Scholar
  39. Jaquiery E, Jilek S, Schluep M, Meylan P, Lysandropoulos A, Pantaleo G, Du Pasquier RA (2010) Intrathecal immune responses to EBV in early MS. Eur J Immunol 40(3):878–887PubMedCrossRefGoogle Scholar
  40. Jilek S, Schluep M, Meylan P, Vingerhoets F, Guignard L, Monney A, Kleeberg J, Le Goff G, Pantaleo G, Du Pasquier RA (2008) Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131(Pt 7):1712–1721PubMedCrossRefGoogle Scholar
  41. Jilek S, Schluep M, Harari A, Canales M, Lysandropoulos A, Zekeridou A, Pantaleo G, Du Pasquier RA (2012) HLA-B7-restricted EBV-specific CD8+ T cells are dysregulated in multiple sclerosis. J Immunol 88(9):4671–4680CrossRefGoogle Scholar
  42. Kang I, Quan T, Nolasco H, Park SH, Hong MS, Crouch J, Pamer EG, Howe JG, Craft J (2004) Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J Immunol 172(2):1287–1294PubMedCrossRefGoogle Scholar
  43. Klavinskis LS, Willcox N, Oxford JS, Newsom-Davis J (1985) Antivirus antibodies in myasthenia gravis. Neurology 35(9):1381–1384PubMedCrossRefGoogle Scholar
  44. Koch-Henriksen N, Sorensen PS (2010) The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 9(5):520–532PubMedCrossRefGoogle Scholar
  45. Kurtzke JF, Heltberg A (2001) Multiple sclerosis in the Faroe Islands: an epitome. J Clin Epidemiol 54(1):1–22PubMedCrossRefGoogle Scholar
  46. Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L (2002) A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 3(10):940–943PubMedCrossRefGoogle Scholar
  47. Larsen M, Sauce D, Deback C, Arnaud L, Mathian A, Miyara M, Boutolleau D, Parizot C, Dorgham K, Papagno L, Appay V, Amoura Z, Gorochov G (2011) Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLoS Pathog 7(10):e1002328PubMedCentralPubMedCrossRefGoogle Scholar
  48. Levin LI, Munger KL, Rubertone MV, Peck CA, Lennette ET, Spiegelman D, Ascherio A (2005) Temporal relationship between elevation of Epstein Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293(20):2496–2500PubMedCrossRefGoogle Scholar
  49. Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A (2010) Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol 67(6):824–830PubMedCentralPubMedGoogle Scholar
  50. Lindsey JW, Patel S, Zou J (2008) Epstein-Barr virus genotypes in multiple sclerosis. Acta Neurol Scand 117(2):141–144PubMedGoogle Scholar
  51. Lindsey J, Hatfield L, Crawford M, Patel S (2009) Quantitative PCR for Epstein-Barr virus DNA and RNA in multiple sclerosis. Multiple Sclerosis J 15(2):153–158CrossRefGoogle Scholar
  52. Lisak RP, Benjamins JA, Nedelkoska L, Barger JL, Ragheb S, Fan B, Ouamara N, Johnson TA, Rajasekharan S, Bar-Or A (2012) Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J Neuroimmunol 246(1–2):85–95PubMedCrossRefGoogle Scholar
  53. Long HM, Chagoury OL, Leese AM, Ryan GB, James E, Morton LT, Abbott RJ, Sabbah S, Kwok W, Rickinson AB (2013) MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med 210(5):933–949PubMedCentralPubMedCrossRefGoogle Scholar
  54. Lossius A, Johansen JN, Vartdal F, Robins H, Jurate Saltyte B, Holmoy T, Olweus J (2014) High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8(+) T cells. Eur J Immunol 44(11):3439–3452PubMedCrossRefGoogle Scholar
  55. Lovett-Racke AE, Trotter JL, Lauber J, Perrin PJ, June CH, Racke MK (1998) Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J Clin Invest 101(4):725–730PubMedCentralPubMedCrossRefGoogle Scholar
  56. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717PubMedCrossRefGoogle Scholar
  57. Lunemann JD, Ascherio A (2009) Immune responses to EBNA1. Biomarkers in MS? Neurology 73(1):13–14PubMedCrossRefGoogle Scholar
  58. Lunemann JD, Edwards N, Muraro PA, Hayashi S, Cohen JI, Munz C, Martin R (2006) Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129(Pt 6):1493–1506PubMedCrossRefGoogle Scholar
  59. Lunemann JD, Jelcic I, Roberts S, Lutterotti A, Tackenberg B, Martin R, Munz C (2008) EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med 205(8):1763–1773PubMedCentralPubMedCrossRefGoogle Scholar
  60. Lycke J, Svennerholm B, Hjelmquist E, Frisen L, Badr G, Andersson M, Vahlne A, Andersen O (1996) Acyclovir treatment of relapsing-remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study. J Neurol 243(3):214–224PubMedCrossRefGoogle Scholar
  61. MacMahon B, Trichopolous D (1996) Epidemiology: principles and methods, 2nd edn. Little, Brown, & Co, BostonGoogle Scholar
  62. Marijon E, Mirabel M, Celermajer DS, Jouven X (2012) Rheumatic heart disease. Lancet 379(9819):953–964PubMedCrossRefGoogle Scholar
  63. Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R (2001) CD4 + CD28− costimulation-independent T cells in multiple sclerosis. J Clin Invest 108(8):1185–1194PubMedCentralPubMedCrossRefGoogle Scholar
  64. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA (2005) Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med 11(1):85–89PubMedCrossRefGoogle Scholar
  65. Mechelli R, Anderson J, Vittori D, Coarelli G, Annibali V, Cannoni S, Aloisi F, Salvetti M, James JA, Ristori G (2011) Epstein-Barr virus nuclear antigen-1 B-cell epitopes in multiple sclerosis twins. Multiple Sclerosis J 17(11):1290–1294CrossRefGoogle Scholar
  66. Moutschen M, Leonard P, Sokal EM, Smets F, Haumont M, Mazzu P, Bollen A, Denamur F, Peeters P, Dubin G, Denis M (2007) Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults. Vaccine 25(24):4697–4705PubMedCrossRefGoogle Scholar
  67. Munch M, Hvas J, Christensen T, Møller-Larsen A, Haahr S (1998) A single subtype of Epstein-Barr virus in members of multiple sclerosis clusters. Acta Neurol Scand 98:395–399PubMedCrossRefGoogle Scholar
  68. Munger KL, Levin LI, O’Reilly EJ, Falk KI, Ascherio A (2011) Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Multiple Sclerosis J 17(10):1185–1193CrossRefGoogle Scholar
  69. Nielsen TR, Rostgaard K, Nielsen NM, Koch-Henriksen N, Haahr S, Sorensen PS, Hjalgrim H (2007) Multiple sclerosis after infectious mononucleosis. Arch Neurol 64(1):72–75PubMedCrossRefGoogle Scholar
  70. Orton SM, Herrera BM, Yee IM, Valdar W, Ramagopalan SV, Sadovnick AD, Ebers GC (2006) Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol 5(11):932–936PubMedCrossRefGoogle Scholar
  71. Peferoen LA, Lamers F, Lodder LN, Gerritsen WH, Huitinga I, Melief J, Giovannoni G, Meier U, Hintzen RQ, Verjans GM, van Nierop GP, Vos W, Peferoen-Baert RM, Middeldorp JM, van der Valk P, Amor S (2010) Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 133(Pt 5):e137PubMedCrossRefGoogle Scholar
  72. Pender MP (2003) Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 24(11):584–588PubMedCrossRefGoogle Scholar
  73. Pender MP, Csurhes PA, Pfluger CM, Burrows SR (2014a) Deficiency of CD8+ effector memory T cells is an early and persistent feature of multiple sclerosis. Mult Scler J 20(14):1825–1832Google Scholar
  74. Pender MP, Csurhes PA, Smith C, Beagley L, Hooper KD, Raj M, Coulthard A, Burrows SR, Khanna R (2014b) Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Multiple Sclerosis J 20(11):1541–1544Google Scholar
  75. Pohl D, Krone B, Rostasy K, Kahler E, Brunner E, Lehnert M, Wagner HJ, Gartner J, Hanefeld F (2006) High seroprevalence of Epstein-Barr virus in children with multiple sclerosis. Neurology 67(11):2063–2065PubMedCrossRefGoogle Scholar
  76. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354(9):899–910PubMedCrossRefGoogle Scholar
  77. Poole BD, Gross T, Maier S, Harley JB, James JA (2008) Lupus-like autoantibody development in rabbits and mice after immunization with EBNA-1 fragments. J Autoimmun 31(4):362–371PubMedCentralPubMedCrossRefGoogle Scholar
  78. Pugliatti M, Sotgiu S, Rosati G (2002) The worldwide prevalence of multiple sclerosis. Clin Neurol Neurosurg 104(3):182–191PubMedCrossRefGoogle Scholar
  79. Ramagopalan SV, Meier UC, Conacher M, Ebers GC, Giovannoni G, Crawford DH, McAulay KA (2011) Role of the HLA system in the association between multiple sclerosis and infectious mononucleosis. Arch Neurol 68(4):469–472PubMedCrossRefGoogle Scholar
  80. Rubicz R, Yolken R, Drigalenko E, Carless MA, Dyer TD, Bauman L, Melton PE, Kent JW Jr, Harley JB, Curran JE, Johnson MP, Cole SA, Almasy L, Moses EK, Dhurandhar NV, Kraig E, Blangero J, Leach CT, Goring HH (2013) A genome-wide integrative genomic study localizes genetic factors influencing antibodies against Epstein-Barr virus nuclear antigen 1 (EBNA-1). PLoS Genet 9(1):e1003147PubMedCentralPubMedCrossRefGoogle Scholar
  81. Sabbatini A, Bombardieri S, Migliorini P (1993) Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur J Immunol 23(5):1146–1152PubMedCrossRefGoogle Scholar
  82. Sargsyan SA, Shearer AJ, Ritchie AM, Burgoon MP, Anderson S, Hemmer B, Stadelmann C, Gattenloehner S, Owens GP, Gilden D, Bennett JL (2010) Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 74(14):1127–1135PubMedCentralPubMedCrossRefGoogle Scholar
  83. Savoldo B, Cubbage ML, Durett AG, Goss J, Huls MH, Liu Z, Teresita L, Gee AP, Ling PD, Brenner MK, Heslop HE, Rooney CM (2002) Generation of EBV-specific CD4+ cytotoxic T cells from virus naive individuals. J Immunol 168(2):909–918PubMedCrossRefGoogle Scholar
  84. Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P, Andreoni L, Trivedi P, Salvetti M, Faggioni A, Aloisi F (2007) Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 204(12):2899–2912PubMedCentralPubMedCrossRefGoogle Scholar
  85. Simard JF, Costenbader KH (2007) What can epidemiology tell us about systemic lupus erythematosus? Int J Clin Pract 61(7):1170–1180PubMedCrossRefGoogle Scholar
  86. Simon K, Schmidt H, Loud S, Ascherio A (2014) Risk factors for multiple sclerosis, neuromyelitis optica and transverse myelitis. Multiple Sclerosis J 21(6):703–709Google Scholar
  87. Sokal EM, Hoppenbrouwers K, Vandermeulen C, Moutschen M, Leonard P, Moreels A, Haumont M, Bollen A, Smets F, Denis M (2007) Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J Infect Dis 196(12):1749–1753PubMedCrossRefGoogle Scholar
  88. Strom BL, Reidenberg MM, West S, Snyder ES, Freundlich B, Stolley PD (1994) Shingles, allergies, family medical history, oral contraceptives, and other potential risk factors for systemic lupus erythematosus. Am J Epidemiol 140(7):632–642PubMedGoogle Scholar
  89. Sundqvist E, Sundstrom P, Linden M, Hedstrom AK, Aloisi F, Hillert J, Kockum I, Alfredsson L, Olsson T (2012) Epstein-Barr virus and multiple sclerosis: interaction with HLA. Genes Immun 13(1):14–20PubMedCrossRefGoogle Scholar
  90. Sundstrom P, Juto P, Wadell G, Hallmans G, Svenningsson A, Nystrom L, Dillner J, Forsgren L (2004) An altered immune response to Epstein-Barr virus in multiple sclerosis: a prospective study. Neurology 62(12):2277–2282PubMedCrossRefGoogle Scholar
  91. Sundstrom P, Nystrom M, Ruuth K, Lundgren E (2009) Antibodies to specific EBNA-1 domains and HLA DRB11501 interact as risk factors for multiple sclerosis. J Neuroimmunol 215(1–2):102–107PubMedCrossRefGoogle Scholar
  92. Tai A, O’Reilly E, Alroy K, Simon K, Munger K, Huber B, Ascherio A (2008) Human endogenous retrovirus-K18 Env as a risk factor in multiple sclerosis. Multiple Sclerosis J 14(9):1175–1180CrossRefGoogle Scholar
  93. Thacker EL, Mirzaei F, Ascherio A (2006) Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol 59(3):499–503PubMedCrossRefGoogle Scholar
  94. Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121PubMedCrossRefGoogle Scholar
  95. Tzartos JS, Khan G, Vossenkamper A, Cruz-Sadaba M, Lonardi S, Sefia E, Meager A, Elia A, Middeldorp JM, Clemens M, Farrell PJ, Giovannoni G, Meier UC (2012) Association of innate immune activation with latent Epstein-Barr virus in active MS lesions. Neurology 78(1):15–23PubMedCrossRefGoogle Scholar
  96. Ulff-Moller CJ, Nielsen NM, Rostgaard K, Hjalgrim H, Frisch M (2010) Epstein-Barr virus-associated infectious mononucleosis and risk of systemic lupus erythematosus. Rheumatology (Oxford) 49(9):1706–1712CrossRefGoogle Scholar
  97. van Sechel AC, Bajramovic JJ, van Stipdonk MJ, Persoon-Deen C, Geutskens SB, van Noort JM (1999) EBV-induced expression and HLA-DR-restricted presentation by human B cells of alpha B-crystallin, a candidate autoantigen in multiple sclerosis. J Immunol 162(1):129–135PubMedGoogle Scholar
  98. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+ CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199(7):971–979PubMedCentralPubMedCrossRefGoogle Scholar
  99. von Budingen HC, Bar-Or A, Zamvil SS (2011) B cells in multiple sclerosis: connecting the dots. Curr Opin Immunol 23(6):713–721CrossRefGoogle Scholar
  100. Wagner H-J, Munger KL, Ascherio A (2004) Plasma viral load of Epstein-Barr virus and risk of multiple sclerosis. Eur J Neurol 11:833–834PubMedCrossRefGoogle Scholar
  101. Wandinger K, Jabs W, Siekhaus A, Bubel S, Trillenberg P, Wagner H, Wessel K, Kirchner H, Hennig H (2000) Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology 55(2):178–184PubMedCrossRefGoogle Scholar
  102. Warner HB, Carp RI (1988) Multiple sclerosis etiology—an Epstein-Barrr virus hypothesis. Med Hypotheses 25:93–97PubMedCrossRefGoogle Scholar
  103. Waubant E, Mowry EM, Krupp L, Chitnis T, Yeh EA, Kuntz N, Ness J, Belman A, Milazzo M, Gorman M, Weinstock-Guttman B, Rodriguez M, James JA (2013) Antibody response to common viruses and human leukocyte antigen-DRB1 in pediatric multiple sclerosis. Multiple Sclerosis J 19(7):891–895CrossRefGoogle Scholar
  104. Willis SN, Stadelmann C, Rodig SJ, Caron T, Gattenloehner S, Mallozzi SS, Roughan JE, Almendinger SE, Blewett MM, Bruck W, Hafler DA, O’Connor KC (2009) Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132(Pt 12):3318–3328PubMedCentralPubMedCrossRefGoogle Scholar
  105. Wallin MT, Culpepper WJ, Coffman P, Pulaski S, Maloni H, Mahan CM, Haselkorn JK, Kurtzke JF and for the Veterans Affairs Multiple Sclerosis Centres of Excellence Epidemiology Group (2012) The Gulf War era multiple sclerosis cohort: age and incidence rates by race, sex and service. Brain 135(Pt 6):1778–1785Google Scholar
  106. Yea C, Tellier R, Chong P, Westmacott G, Marrie RA, Bar-Or A, Banwell B, On behalf of the Canadian Pediatric Demyelinating Disease Network (2013) Epstein-Barr virus in oral shedding of children with multiple sclerosis. Neurology 81(16):1392–1399Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Channing Division of Network Medicine, Department of MedicineBrigham and Women’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.Department of Epidemiology and NutritionHarvard T.H. Chan School of Public HealthBostonUSA

Personalised recommendations