Advertisement

Burkitt’s Lymphoma

  • Rosemary Rochford
  • Ann M. Moormann
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 390)

Abstract

Endemic Burkitt’s lymphoma (BL) remains the most prevalent pediatric cancer in sub-Saharan Africa even though it was the first human cancer with a viral etiology described over 50 years ago. Epstein–Barr virus (EBV) was discovered in a BL tumor in 1964 and has since been implicated in other malignancies. The etiology of endemic BL has been linked to EBV and Plasmodium falciparum malaria co-infection. While epidemiologic studies have yielded insight into EBV infection and the etiology of endemic BL, the modulation of viral persistence in children by malaria and deficits in EBV immunosurveillance has more recently been reified. Renewed efforts to design prophylactic and therapeutic EBV vaccines provide hope of preventing EBV-associated BL as well as increasing the ability to cure this cancer.

Keywords

Viral Capsid Antigen Holoendemic Malaria Malaria Holoendemic Area Malaria Holoendemic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Asito AS, Moormann AM, Kiprotich C, Ng’ang’a ZW, Ploutz-Snyder R et al (2008) Alterations on peripheral B cell subsets following an acute uncomplicated clinical malaria infection in children. Malar J 7:238PubMedCentralCrossRefPubMedGoogle Scholar
  2. Asito AS, Piriou E, Odada PS, Fiore N, Middeldorp JM et al (2010) Elevated anti-Zta IgG levels and EBV viral load are associated with site of tumor presentation in endemic Burkitt’s lymphoma patients: a case control study. Infect Agent Cancer 5:13PubMedCentralCrossRefPubMedGoogle Scholar
  3. Aya T, Kinoshita T, Imai S, Koizumi S, Mizuno F et al (1991) Chromosome translocation and c-MYC activation by Epstein-Barr virus and Euphorbia tirucalli in B lymphocytes. Lancet 337:1190CrossRefPubMedGoogle Scholar
  4. Balfour HH Jr (2014) Progress, prospects, and problems in Epstein-Barr virus vaccine development. Curr Opin Virol 6C:1–5CrossRefGoogle Scholar
  5. Balfour HH Jr, Sifakis F, Sliman JA, Knight JA, Schmeling DO et al (2013) Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6–19 years in the United States and factors affecting its acquisition. J Infect Dis 208:1286–1293CrossRefPubMedGoogle Scholar
  6. Biggar RJ, Nkrumah FK (1979) Burkitt’s lymphoma in Ghana: urban-rural distribution, time-space clustering and seasonality. Int J Cancer 23:330–336CrossRefPubMedGoogle Scholar
  7. Biggar RJ, Gardiner C, Lennette ET, Collins WE, Nkrumah FK et al (1981) Malaria, sex, and place of residence as factors in antibody response to Epstein-Barr virus in Ghana, West Africa. Lancet 2:115–118CrossRefPubMedGoogle Scholar
  8. Burkitt D (1958) A sarcoma involving the jaws in African children. Br J Surg 46:218–223CrossRefPubMedGoogle Scholar
  9. Burkitt D (1962a) Determining the climatic limitations of a children’s cancer common in Africa. Br Med J 2:1019–1023PubMedCentralCrossRefPubMedGoogle Scholar
  10. Burkitt D (1962b) A “tumour safari” in East and Central Africa. Br J Cancer 16:379–386PubMedCentralCrossRefPubMedGoogle Scholar
  11. Burkitt D (1962c) A children’s cancer dependent on climatic factors. Nature 194:232–234CrossRefPubMedGoogle Scholar
  12. Burkitt DP (1969) Etiology of Burkitt’s lymphoma–an alternative hypothesis to a vectored virus. J Natl Cancer Inst 42:19–28PubMedGoogle Scholar
  13. Burkitt D, O’Conor GT (1961) Malignant lymphoma in African children. I. A clinical syndrome. Cancer 14:258–269PubMedGoogle Scholar
  14. Burkitt D, Wright D (1966) Geographical and tribal distribution of the African lymphoma in Uganda. Br Med J 1:569–573PubMedCentralCrossRefPubMedGoogle Scholar
  15. Carpenter LM, Newton R, Casabonne D, Ziegler J, Mbulaiteye S et al (2008) Antibodies against malaria and Epstein-Barr virus in childhood Burkitt lymphoma: a case-control study in Uganda. Int J Cancer 122:1319–1323CrossRefPubMedGoogle Scholar
  16. Chattopadhyay PK, Chelimo K, Embury PB, Mulama DH, Sumba PO et al (2013) Holoendemic malaria exposure is associated with altered Epstein-Barr virus-specific CD8(+) T-cell differentiation. J Virol 87:1779–1788PubMedCentralCrossRefPubMedGoogle Scholar
  17. Chene A, Donati D, Guerreiro-Cacais AO, Levitsky V, Chen Q et al (2007) A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog 3:e80PubMedCentralCrossRefPubMedGoogle Scholar
  18. Cohen JI, Mocarski ES, Raab-Traub N, Corey L, Nabel GJ (2013) The need and challenges for development of an Epstein-Barr virus vaccine. Vaccine 31(Suppl 2):B194–B196PubMedCentralCrossRefPubMedGoogle Scholar
  19. Crawford DH (2001) Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 356:461–473PubMedCentralCrossRefPubMedGoogle Scholar
  20. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC et al (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827PubMedCentralCrossRefPubMedGoogle Scholar
  21. Dalldorf G, Linsell CA, Barnhart FE, Martyn R (1964) An epidemiologic approach to the lymphomas of African children and Burkitt’s sacroma of the jaws. Perspect Biol Med 7:435–449CrossRefPubMedGoogle Scholar
  22. de-The G (1977) Is Burkitt’s lymphoma related to perinatal infection by Epstein-Barr virus? Lancet 1:335–338Google Scholar
  23. de-The G, Geser A, Day NE, Tukei PM, Williams EH et al (1978) Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 274:756–761Google Scholar
  24. Donati D, Espmark E, Kironde F, Mbidde EK, Kamya M et al (2006) Clearance of circulating Epstein-Barr virus DNA in children with acute malaria after antimalaria treatment. J Infect Dis 193:971–977CrossRefPubMedGoogle Scholar
  25. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703CrossRefPubMedGoogle Scholar
  26. Fachiroh J, Paramita DK, Hariwiyanto B, Harijadi A, Dahlia HL et al (2006) Single-assay combination of Epstein-Barr Virus (EBV) EBNA1- and viral capsid antigen-p18-derived synthetic peptides for measuring anti-EBV immunoglobulin G (IgG) and IgA antibody levels in sera from nasopharyngeal carcinoma patients: options for field screening. J Clin Microbiol 44:1459–1467PubMedCentralCrossRefPubMedGoogle Scholar
  27. Fakunle YM, Greenwood BM (1976) A suppressor T-cell defect in tropical splenomegaly syndrome. Lancet 2:608–609CrossRefPubMedGoogle Scholar
  28. Geser A, Brubaker G (1985) A preliminary report of epidemiological studies of Burkitt’s lymphoma, Epstein-Barr virus infection and malaria in North Mara, Tanzania. IARC Sci Publ:205–215Google Scholar
  29. Geser A, Brubaker G, Draper CC (1989) Effect of a malaria suppression program on the incidence of African Burkitt’s lymphoma. Am J Epidemiol 129:740–752PubMedGoogle Scholar
  30. Greenwood BM, Bradley-Moore AM, Bryceson AD, Palit A (1972) Immunosuppression in children with malaria. Lancet 1:169–172CrossRefPubMedGoogle Scholar
  31. Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S et al (2009) The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci U S A 106:2313–2318PubMedCentralCrossRefPubMedGoogle Scholar
  32. Haddow AJ (1963) An improved map for the study of Burkitt’s lymphoma syndrome in Africa. East Afr Med J 40:429–432PubMedGoogle Scholar
  33. Haddow AJ (1964) Age incidence in Burkitt’s lymphoma syndrome. East Afr Med J 41:1–6PubMedGoogle Scholar
  34. Heath E, Begue-Pastor N, Chaganti S, Croom-Carter D, Shannon-Lowe C et al (2012) Epstein-Barr virus infection of naive B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog 8:e1002697PubMedCentralCrossRefPubMedGoogle Scholar
  35. Heller KN, Upshaw J, Seyoum B, Zebroski H, Munz C (2007) Distinct memory CD4+ T-cell subsets mediate immune recognition of Epstein Barr virus nuclear antigen 1 in healthy virus carriers. Blood 109:1138–1146PubMedCentralCrossRefPubMedGoogle Scholar
  36. Henle G, Henle W, Clifford P, Diehl V, Kafuko GW et al (1969) Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J Natl Cancer Inst 43:1147–1157PubMedGoogle Scholar
  37. Ito Y, Kawanishi M, Harayama T, Takabayashi S (1981) Combined effect of the extracts from Croton tiglium, Euphorbia lathyris or Euphorbia tirucalli and n-butyrate on Epstein-Barr virus expression in human lymphoblastoid P3HR-1 and Raji cells. Cancer Lett 12:175–180CrossRefPubMedGoogle Scholar
  38. Kaneda A, Matsusaka K, Aburatani H, Fukayama M (2012) Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 72:3445–3450CrossRefPubMedGoogle Scholar
  39. Kelly GL, Stylianou J, Rasaiyaah J, Wei W, Thomas W et al (2013) Different patterns of Epstein-Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature. J Virol 87:2882–2894PubMedCentralCrossRefPubMedGoogle Scholar
  40. Khanna R, Burrows SR (2000) Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol 54:19–48CrossRefPubMedGoogle Scholar
  41. Labrecque LG, Xue SA, Kazembe P, Phillips J, Lampert I et al (1999) Expression of Epstein-Barr virus lytically related genes in African Burkitt’s lymphoma: correlation with patient response to therapy. Int J Cancer 81:6–11CrossRefPubMedGoogle Scholar
  42. Lam KM, Syed N, Whittle H, Crawford DH (1991) Circulating Epstein-Barr virus-carrying B cells in acute malaria. Lancet 337:876–878CrossRefPubMedGoogle Scholar
  43. Lindahl T, Klein G, Reedman BM, Johansson B, Singh S (1974) Relationship between Epstein-Barr virus (EBV) DNA and the EBV-determined nuclear antigen (EBNA) in Burkitt lymphoma biopsies and other lymphoproliferative malignancies. Int J Cancer 13:764–772CrossRefPubMedGoogle Scholar
  44. MacNeil A, Sumba OP, Lutzke ML, Moormann A, Rochford R (2003) Activation of the Epstein-Barr virus lytic cycle by the latex of the plant Euphorbia tirucalli. Br J Cancer 88:1566–1569PubMedCentralCrossRefPubMedGoogle Scholar
  45. Mannucci S, Luzzi A, Carugi A, Gozzetti A, Lazzi S et al (2012) EBV reactivation and chromosomal polysomies: euphorbia tirucalli as a possible cofactor in endemic Burkitt lymphoma. Adv Hematol 2012:149780PubMedCentralPubMedGoogle Scholar
  46. Mizuno F, Koizumi S, Osato T, Kokwaro JO, Ito Y (1983) Chinese and African Euphorbiaceae plant extracts: markedly enhancing effect on Epstein-Barr virus-induced transformation. Cancer Lett 19:199–205CrossRefPubMedGoogle Scholar
  47. Moormann AM, Chelimo K, Sumba OP, Lutzke ML, Ploutz-Snyder R et al (2005) Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J Infect Dis 191:1233–1238CrossRefPubMedGoogle Scholar
  48. Moormann AM, Chelimo K, Sumba PO, Tisch DJ, Rochford R et al (2007) Exposure to holoendemic malaria results in suppression of Epstein-Barr virus-specific T cell immunosurveillance in Kenyan children. J Infect Dis 195:799–808CrossRefPubMedGoogle Scholar
  49. Moormann AM, Heller KN, Chelimo K, Embury P, Ploutz-Snyder R et al (2009) Children with endemic Burkitt lymphoma are deficient in EBNA1-specific IFN-gamma T cell responses. Int J Cancer 124:1721–1726PubMedCentralCrossRefPubMedGoogle Scholar
  50. Morrow RH, Pike MC, Smith PG (1977) Further studies of space-time clustering of Burkitt’s lymphoma in Uganda. Br J Cancer 35:668–673PubMedCentralCrossRefPubMedGoogle Scholar
  51. Moss DJ, Burrows SR, Castelino DJ, Kane RG, Pope JH et al (1983) A comparison of Epstein-Barr virus-specific T-cell immunity in malaria-endemic and -nonendemic regions of Papua New Guinea. Int J Cancer 31:727–732CrossRefPubMedGoogle Scholar
  52. Munz C (2004) Epstein-barr virus nuclear antigen 1: from immunologically invisible to a promising T cell target. J Exp Med 199:1301–1304PubMedCentralCrossRefPubMedGoogle Scholar
  53. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563CrossRefPubMedGoogle Scholar
  54. Mutalima N, Molyneux E, Jaffe H, Kamiza S, Borgstein E et al (2008) Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: results from a case-control study. PLoS ONE 3:e2505PubMedCentralCrossRefPubMedGoogle Scholar
  55. Neparidze N, Lacy J (2014) Malignancies associated with epstein-barr virus: pathobiology, clinical features, and evolving treatments. Clin Adv Hematol Oncol 12:358–371PubMedGoogle Scholar
  56. Neri A, Barriga F, Inghirami G, Knowles DM, Neequaye J et al (1991) Epstein-Barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndrome-associated lymphoma. Blood 77:1092–1095PubMedGoogle Scholar
  57. Njie R, Bell AI, Jia H, Croom-Carter D, Chaganti S et al (2009) The effects of acute malaria on Epstein-Barr virus (EBV) load and EBV-specific T cell immunity in Gambian children. J Infect Dis 199:31–38CrossRefPubMedGoogle Scholar
  58. Orem J, Sandin S, Mbidde E, Mangen FW, Middeldorp J et al (2014) Epstein-Barr virus viral load and serology in childhood non-Hodgkin’s lymphoma and chronic inflammatory conditions in Uganda: implications for disease risk and characteristics. J Med Virol 86:1796–1803CrossRefPubMedGoogle Scholar
  59. Osato T, Mizuno F, Imai S, Aya T, Koizumi S et al (1987) African Burkitt’s lymphoma and an Epstein-Barr virus-enhancing plant Euphorbia tirucalli. Lancet 1:1257–1258CrossRefPubMedGoogle Scholar
  60. Osato T, Imai S, Kinoshita T, Aya T, Sugiura M et al (1990) Epstein-Barr virus, Burkitt’s lymphoma, and an African tumor promoter. Adv Exp Med Biol 278:147–150CrossRefPubMedGoogle Scholar
  61. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG et al (2007) Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 104:1919–1924PubMedCentralCrossRefPubMedGoogle Scholar
  62. Piriou E, Kimmel R, Chelimo K, Middeldorp JM, Odada PS et al (2009) Serological evidence for long-term Epstein-Barr virus reactivation in children living in a holoendemic malaria region of Kenya. J Med Virol 81:1088–1093PubMedCentralCrossRefPubMedGoogle Scholar
  63. Piriou E, Asito AS, Sumba PO, Fiore N, Middeldorp JM et al (2012) Early age at time of primary Epstein-Barr virus infection results in poorly controlled viral infection in infants from Western Kenya: clues to the etiology of endemic Burkitt lymphoma. J Infect Dis 205:906–913PubMedCentralCrossRefPubMedGoogle Scholar
  64. Portugal S, Doumtabe D, Traore B, Miller LH, Troye-Blomberg M et al (2012) B cell analysis of ethnic groups in Mali with differential susceptibility to malaria. Malar J 11:162PubMedCentralCrossRefPubMedGoogle Scholar
  65. Potup P, Kumsiri R, Kano S, Kalambaheti T, Looareesuwan S et al (2009) Blood stage Plasmodium falciparum antigens induce immunoglobulin class switching in human enriched B cell culture. Southeast Asian J Trop Med Public Health 40:651–664PubMedGoogle Scholar
  66. Rainey JJ, Omenah D, Sumba PO, Moormann AM, Rochford R et al (2007) Spatial clustering of endemic Burkitt’s lymphoma in high-risk regions of Kenya. Int J Cancer 120:121–127CrossRefPubMedGoogle Scholar
  67. Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S et al (2004) AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118:431–438CrossRefPubMedGoogle Scholar
  68. Ramiro AR, Jankovic M, Callen E, Difilippantonio S, Chen HT et al (2006) Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440:105–109CrossRefPubMedGoogle Scholar
  69. Rasti N, Falk KI, Donati D, Gyan BA, Goka BQ et al (2005) Circulating epstein-barr virus in children living in malaria-endemic areas. Scand J Immunol 61:461–465CrossRefPubMedGoogle Scholar
  70. Rickinson AB, Murray RJ, Brooks J, Griffin H, Moss DJ et al (1992) T cell recognition of Epstein-Barr virus associated lymphomas. Cancer Surv 13:53–80PubMedGoogle Scholar
  71. Rickinson AB, Long HM, Palendira U, Munz C, Hislop AD (2014) Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol 35:159–169CrossRefPubMedGoogle Scholar
  72. Riley EM, Stewart VA (2013) Immune mechanisms in malaria: new insights in vaccine development. Nat Med 19:168–178CrossRefPubMedGoogle Scholar
  73. Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y et al (2008) AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135:1028–1038PubMedCentralCrossRefPubMedGoogle Scholar
  74. Ruf IK, Rhyne PW, Yang H, Borza CM, Hutt-Fletcher LM et al (2001) EBV regulates c-MYC, apoptosis, and tumorigenicity in Burkitt’s lymphoma. Curr Top Microbiol Immunol 258:153–160PubMedGoogle Scholar
  75. Siemiatycki J, Brubaker G, Geser A (1980) Space-time clustering of Burkitt’s lymphoma in East Africa: analysis of recent data and a new look at old data. Int J Cancer 25:197–203CrossRefPubMedGoogle Scholar
  76. Singh S, Kennedy MC, Long CA, Saul AJ, Miller LH et al (2003) Biochemical and immunological characterization of bacterially expressed and refolded Plasmodium falciparum 42-kilodalton C-terminal merozoite surface protein 1. Infect Immun 71:6766–6774PubMedCentralCrossRefPubMedGoogle Scholar
  77. Snider CJ, Cole SR, Chelimo K, Sumba PO, Macdonald PD et al (2012) Recurrent Plasmodium falciparum malaria infections in Kenyan children diminish T-cell immunity to Epstein Barr virus lytic but not latent antigens. PLoS ONE 7:e31753PubMedCentralCrossRefPubMedGoogle Scholar
  78. Sulzer AJ, Wilson M, Hall EC (1969) Indirect fluorescent-antibody tests for parasitic diseases. V. An evaluation of a thick-smear antigen in the IFA test for malaria antibodies. Am J Trop Med Hyg 18:199–205PubMedGoogle Scholar
  79. Sumba PO, Kabiru EW, Namuyenga E, Fiore N, Otieno RO et al (2010) Microgeographic variations in Burkitt’s lymphoma incidence correlate with differences in malnutrition, malaria and Epstein-Barr virus. Br J Cancer 103:1736–1741PubMedCentralCrossRefPubMedGoogle Scholar
  80. Tao Q, Robertson KD, Manns A, Hildesheim A, Ambinder RF (1998) Epstein-Barr virus (EBV) in endemic Burkitt’s lymphoma: molecular analysis of primary tumor tissue. Blood 91:1373–1381PubMedGoogle Scholar
  81. Ten Seldam RE, Cooke R, Atkinson L (1966) Childhood Lymphoma in the territories of papua and new guinea. Cancer 19:437–446CrossRefGoogle Scholar
  82. Torgbor C, Awuah P, Deitsch K, Kalantari P, Duca KA et al (2014) A multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis. PLoS Pathog 10:e1004170PubMedCentralCrossRefPubMedGoogle Scholar
  83. van den Bosch C, Lloyd G (2000) Chikungunya fever as a risk factor for endemic Burkitt’s lymphoma in Malawi. Trans R Soc Trop Med Hyg 94:704–705CrossRefPubMedGoogle Scholar
  84. van den Bosch C, Griffin BE, Kazembe P, Dziweni C, Kadzamira L (1993) Are plant factors a missing link in the evolution of endemic Burkitt’s lymphoma? Br J Cancer 68:1232–1235PubMedCentralCrossRefPubMedGoogle Scholar
  85. Verra F, Simpore J, Warimwe GM, Tetteh KK, Howard T et al (2007) Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria. PLoS ONE 2:e978PubMedCentralCrossRefPubMedGoogle Scholar
  86. Wei F, Zhong S, Ma Z, Kong H, Medvec A et al (2013) Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci USA 110:E2480–E2489PubMedCentralCrossRefPubMedGoogle Scholar
  87. Weiss GE, Crompton PD, Li S, Walsh LA, Moir S et al (2009) Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J Immunol 183:2176–2182PubMedCentralCrossRefPubMedGoogle Scholar
  88. Whittle HC, Brown J, Marsh K, Greenwood BM, Seidelin P et al (1984) T-cell control of Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature 312:449–450CrossRefPubMedGoogle Scholar
  89. Williamson WA, Greenwood BM (1978) Impairment of the immune response to vaccination after acute malaria. Lancet 1:1328–1329CrossRefPubMedGoogle Scholar
  90. Wilmore JR, Asito AS, Wei C, Piriou E, Sumba PO et al (2014) AID expression in peripheral blood of children living in a malaria holoendemic region is associated with changes in B cell subsets and Epstein-Barr virus. Int J CancerGoogle Scholar
  91. Wilson JB, Bell JL, Levine AJ (1996) Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 15:3117–3126PubMedCentralPubMedGoogle Scholar
  92. Xue SA, Labrecque LG, Lu QL, Ong SK, Lampert IA et al (2002) Promiscuous expression of Epstein-Barr virus genes in Burkitt’s lymphoma from the central African country Malawi. Int J Cancer 99:635–643CrossRefPubMedGoogle Scholar
  93. Yamamoto N, zur Hausen H (1979) Tumour promoter TPA enhances transformation of human leukocytes by Epstein-Barr virus. Nature 280:244–245Google Scholar
  94. zur Hausen H, Schulte-Holthausen H, Klein G, Henle W, Henle G et al (1970) EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228:1056–1058Google Scholar
  95. zur Hausen H, O’Neill FJ, Freese UK, Hecker E (1978) Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272:373–375Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologySUNY Upstate Medical UniversitySyracuseUSA
  2. 2.Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations