Advertisement

Perspectives on Algal Engineering for Enhanced Biofuel Production

  • Namita KhannaEmail author

Abstract

Algae as photoautotrophs can trap the solar energy and convert it into usable form. Solar energy is the most abundant and ultimate energy source. The total amount of solar energy absorbed by the Earth’s surface is 1.74 × 105 terawatts (TW) (Bhattacharya S et al., Biochem Biotechnol 120:159–167, 2005), which is a tremendous amount as compared to the world’s energy consumption (~13 TW) (Walter JM et al., Curr Opin Biotechnol 21:265–270, 2010). Therefore, conversion of solar energy to fuels may constitute the most sustainable way to solve the energy crisis.

Keywords

Carbonic Anhydrase Hydrogen Production Fatty Alcohol Synthetic Biology Biofuel Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Badger, M.R. and Price, G.D. (2003). CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. Journal of Experimental Botany, 54, 609–622.CrossRefGoogle Scholar
  2. Badger, M.R., Andrews, T.J., Whitney, S.M., Ludwig, M., Yellowlees, D.C., Leggat, W. and Price, G.D. (1998). The diversity and coevolution of rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Canadian Journal of Botany, 76, 1052–1071.CrossRefGoogle Scholar
  3. Bar-Even, A., Noor, E., Lewis, N.E. and Milo, R. (2010). Design and analysis of synthetic carbon fixation pathways. Proceedings of the National Academy of Sciences, USA, 107, 8889–8894.Google Scholar
  4. Bernat, G., Waschewski, N. and Rögner, M. (2009). Towards efficient hydrogen production: The impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynthesis Research, 99, 205–216.CrossRefGoogle Scholar
  5. Bershtein, S. and Tawfik, D.S. (2008). Advances in laboratory evolution of enzymes. Current Opinion in Chemical Biology, 12,151–158.CrossRefGoogle Scholar
  6. Bhattacharya, S., Schiavone, M., Nayak, A. and Bhattacharya, S.K. (2005). Biotechnological storage and utilization of entrapped solar energy. Applied Biochemistry Biotechnology, 120, 159–167.CrossRefGoogle Scholar
  7. Boison, G., Bothe, H., Hansel, A. and Lindblad, P. (1999). Evidence against a common use of the diaphorase subunits by the bidirectional hydrogenase and by the respiratory complex I in cyanobacteria. FEMS Microbiology Letters, 174, 159–165.CrossRefGoogle Scholar
  8. Bonacci, W., Teng, P.K., Afonso, B., Niederholtmeyer, H., Grob, P., Silver, P.A. and Savage, D.F. (2012). Modularity of a carbon-fixing protein organelle. Proceedings of the National Academy of Sciences of the United States of America, 109, 478–483.Google Scholar
  9. Carrasco, C.D., Holliday, S.D., Hansel, A., Lindblad, P. and Golden, J.W. (2005). Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. Journal of Bacteriology, 187, 6031–6038.CrossRefGoogle Scholar
  10. Casalot, L. and Rousset, M. (2001). Maturation of the [NiFe] hydrogenases. Trends in Microbiology, 9, 228–237.CrossRefGoogle Scholar
  11. Chen, L.M., Li, K.Z., Miwa, T. and Izui, K. (2004). Overexpression of a cyanobacterial phosphoenolpyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism. Planta, 219, 440–449.Google Scholar
  12. Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26, 126–131.CrossRefGoogle Scholar
  13. Cirino, P.C. and Frei, C.S. (2009). Combinatorial enzyme engineering. In: Sheldon, J., Park and Cochran, J.R. (eds) Protein Engineering and Design. CRC Press, BC, pp. 131–150.Google Scholar
  14. Collman, J.P. (1996). Coupling H2 to electron transfer. Nature Structural Biology, 3, 213–217.CrossRefGoogle Scholar
  15. Daniel, H., Torres-Ruiz, J.A. and McFadden, B.A. (1989). Amplified expression of ribulosebisphosphate carboxylase/oxygenase in pBR 322-transformants of Anacystis nidulans. Archives of Microbiology, 151, 59–64.CrossRefGoogle Scholar
  16. Deng, M.D. and Coleman, J.R. (1999). Ethanol synthesis by genetic engineering in cyanobacteria. Applied and Environmental Microbiology, 65, 523–528.Google Scholar
  17. Dienst, D., Georg, J., Abts, T., Jakorew, L., Kuchmina, E., Borner, T. et al. (2014). Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnology for Biofuels, 7, 7–21.CrossRefGoogle Scholar
  18. Ducat, D.C., Sachdeva, G. and Silver, P.A. (2011). Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 108, 3941–3946.Google Scholar
  19. Ekman, M., Ow, S.Y., Holmqvist, M. and Lindblad, P. (2011). Metabolic adaptations in a H2 producing heterocyst-forming cyanobacterium: Potentials and implications for biological engineering. Journal of Proteomic Research, 10, 1772–1784.CrossRefGoogle Scholar
  20. Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–240.CrossRefGoogle Scholar
  21. Fukuzawa, H., Suzuki, E., Komukai, Y. and Miyachi, S. (1992). A gene homologous to chloroplast carbonic-anhydrase (icfa) is essential to photosynthetic carbon-dioxide fixation by Synechococcus PCC7942. Proceedings of the National Academy of Sciences of the United States of America, 89, 4437–4441.Google Scholar
  22. Gärtner, K., Lechno-Yossef, S., Cornish, A.J., Wolk, C.P. and Hegg, E.L. (2012). Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC 7120. Applied and Environmental Microbiology, 78, 8579–8586.CrossRefGoogle Scholar
  23. Greene, D.N., Whitney, S.M. and Matsumura, I. (2007). Artificially evolved Synechococcus PCC 6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochemistry Journal, 404, 517–524.CrossRefGoogle Scholar
  24. Han, J., McCarthy, E.D., Hoeven, W.V., Calvin, M. and Bradley, W.H. (1968). Organic geochemical studies, a preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment. Proceedings of the National Academy of Sciences, USA , 59, 2933. Google Scholar
  25. Happe, T., Schütz, K. and Bohme, H. (2000). Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology, 182, 1624–1631.CrossRefGoogle Scholar
  26. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54, 621–639.CrossRefGoogle Scholar
  27. Imashimizu, M., Bernát, G., Isato, K., Broekmans, M., Konno, H., Sunamura, E.I., Rögner, M. and Hisabori, T. (2011). Regulation of FoF1-ATPase from Synechocystis sp. PCC 6803 by the γ and ∈ subunits is significant for light/dark adaptation. Journal of Biochemistry, 286, 26595–26602.Google Scholar
  28. Iwaki, T., Haranoh, K., Inoue, N., Kojima, K., Satoh, R., Nishino, T. and Wadano, A. (2006). Expression of foreign type I ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) stimulates photosynthesis in cyanobacterium Synechococcus PCC 7942 cells. Photosynthesis Research, 88, 287–297.CrossRefGoogle Scholar
  29. Janssen, M., de Winter, M., Tramper, J., Mur, L. R., Snel, J. and Wijffels, R.H. (2000). Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. Journal of Biotechnology, 78, 123–137.CrossRefGoogle Scholar
  30. Khetkorn, W., Lindblad, P. and Inchroensakdi, A. (2012). Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. Journal of Biological Engineering, 6, 19.CrossRefGoogle Scholar
  31. Lan, E.L. and Liao, J.C. (2012). ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 109, 6018–6023.Google Scholar
  32. Li, H. and Liao, J.C. (2013). Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microbial Cell Factories, 12, 4.CrossRefGoogle Scholar
  33. Li, N., Chang, W.C., Warui, D.M., Booker, S.J., Krebs, C. and Bollinger, J.M. (2012). Evidence for Only Oxygenative Cleavage of Aldehydes to Alk(a/e)nes and Formate by Cyanobacterial Aldehyde Decarbonylases. Biochemistry, 51, 7908–7916.CrossRefGoogle Scholar
  34. Li, X., Shen, C.R. and Liao, J.C. (2014). Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. Photosynthesis Research, 120, 301–310.CrossRefGoogle Scholar
  35. Lieman-Hurwitz, J., Rachmilevitch, S., Mittler, R., Marcus, Y. and Kaplan, A. (2003). Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3 accumulation in cyanobacteria. Plant Biotechnology Journal, 1, 43–50.CrossRefGoogle Scholar
  36. Lindberg, P., Devine, E., Stensjö, K. and Lindblad, P. (2012). HupW protease specifically required for processing of the catalytic subunit of the uptake hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Applied Environmental Microbiology, 78, 273–276.CrossRefGoogle Scholar
  37. Lindberg, P., Park, S. and Melis, A. (2010). Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Engineering, 12, 70–79.CrossRefGoogle Scholar
  38. Lindberg, P., Schütz, K., Happe, T. and Lindblad, P. (2002). A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. International Journal Hydrogen Energy, 27, 1291–1296.CrossRefGoogle Scholar
  39. Liu, X., Sheng, J. and Curtiss, R. (2011). Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 108, 6899–6904.Google Scholar
  40. Long, B.M., Badger, M.R., Whitney, S.M. and Price, G.D. (2007). Analysis of carboxysomes from Synechococcus PCC 7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. The Journal of Biological Chemistry, 282, 29323–29335.CrossRefGoogle Scholar
  41. Long, S.P., Zhu, X.G., Naidu, S.L. and Ort, D.R. (2006). Can improvement in photosynthesis increase crop yields? Plant Cell Environment, 29, 315–330.CrossRefGoogle Scholar
  42. Lu, X., Vora, H. and Khosla, C. (2008). Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metabolic Engineering, 10, 333–339.CrossRefGoogle Scholar
  43. Masukawa, M., Mochimaru, M. and Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology Biotechnology, 58, 618–624.CrossRefGoogle Scholar
  44. McGinn, P.J., Price, G.D., Maleszka, R. and Badger, M.R. (2003). Inorganic carbon limitation and light control the expression of transcripts related to the CO2-concentrating mechanism in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiology, 132, 218–229.CrossRefGoogle Scholar
  45. Melis, A. (2009). Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 177, 272–280.CrossRefGoogle Scholar
  46. Metz, J.G., Pollard, M.R., Anderson, L., Hayes, T.R. and Lassner, M.W. (2000). Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiology, 122, 635–644.CrossRefGoogle Scholar
  47. Moal, G. and Lagoutte, B. (2012). Photo-induced electron transfer from Photosystem 1 to NADP+: Characterization and tentative simulation of the in vivo environment. Biochemistry Biophysics Acta, 1817, 1635–1645.CrossRefGoogle Scholar
  48. Moroney, J. V. and Ynalvez, R.A. (2007). Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryotic Cell, 6, 1251–1259.CrossRefGoogle Scholar
  49. Msanne, J., Xu, D., Konda, A.R., Casas-Mollano, J.A. and Awada, T. (2012). Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry, 75, 50–59.CrossRefGoogle Scholar
  50. Mueller-Cajar, O. and Whitney, S.M. (2008). Directing the evolution of Rubisco and Rubiscoactivase: First impressions of a new tool for photosynthesis research. Photosynthesis Research, 98, 667–675.CrossRefGoogle Scholar
  51. Mussgnug, J.H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., McDowall, A., Schenk, P.M., Kruse, O. and Hankamer, B. (2007). Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Journal of Plant Biotechnology, 5, 802–814.CrossRefGoogle Scholar
  52. Nakajima, Y., Fujiwara, S., Sawai, H., Imashimizu, M. and Tsuzuki, M. (2001). A phycocyanin-deficient mutant of Synechocystis PCC 6714 with a single-base substitution upstream of the cpc operon. Plant Cell Physiology, 42, 992–998.CrossRefGoogle Scholar
  53. Nayak, B.K., Roy, S. and Das, D. (2014). Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. International Journal of Hydrogen Energy, 39, 7553–7560.CrossRefGoogle Scholar
  54. Nguyen, M.T., Choi, S.P., Lee, J., Lee, J.H. and Sim, S.J. (2009). Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Journal of Microbiology and Biotechnology, 19, 161–166.CrossRefGoogle Scholar
  55. Oliver, J.W.K., Machado, I.M.P., Yoneda, H. and Atsumi, S. (2013). Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proceedings of the National Academy of Sciences of the United States of America, 110, 1249–1254.Google Scholar
  56. Peralta-Yahya, P.P., Zhang, F.Z., Cardayre, S.B. and Keasling, J.D. (2012). Microbial engineering for the production of advanced biofuels. Nature , 488, 320328.CrossRefGoogle Scholar
  57. Pinto, F., van Elburg, K.A., Pacheco, C.C., Lopo, M., Noirel, J., Montagud, A. and Tamagnini, P. (2012). Construction of a chassis for hydrogen production: Physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Microbiology, 158, 448–464.CrossRefGoogle Scholar
  58. Polle, J.E., Kanakagiri, S.D. and Melis, A. (2003). tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta, 217, 49–59.Google Scholar
  59. Poulsen, N. and Kroger, N. (2005). A new molecular tool for transgenic diatoms. Journal of FEBS, 272, 3413–3423.CrossRefGoogle Scholar
  60. Price, G.D. and Badger, M.R. (1989). Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC 7942 creates a high-CO2 requiring phenotype. Plant Physiology, 91, 505–513.CrossRefGoogle Scholar
  61. Price, G.D., Woodger, F.J., Badger, M.R., Howitt, S.M. and Tucker, L. (2004). Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proceedings of the National Academy of Sciences, USA, 101, 18228–18233.Google Scholar
  62. Quinn, J.M. and Merchant, S. (1995). Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell, 7, 623–638.CrossRefGoogle Scholar
  63. Rascher, U., Lakatos, M., Büdel, B. and Lüttge, U. (2003). Photosynthetic field capacity of cyanobacteria of a tropical inselberg of the Guiana Highlands. European Journal of Phycology, 38, 247–256.CrossRefGoogle Scholar
  64. Reifschneider-Wegner, K., Kanygin, A. and Redding, K.E. (2014). Expression of the [FeFe] hydrogenase in the chloroplast of Chlamydomonas reinhardtii. International Journal of Hydrogen Energy, 39, 3657–3665.CrossRefGoogle Scholar
  65. Riekhof, W.R., Sears, B.B. and Benning, C. (2005). Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: Discovery of the betaine lipid synthase BTA1(Cr). Eukaryotic Cell, 4, 242–252.CrossRefGoogle Scholar
  66. Rögner, M. (2013). Metabolic engineering of cyanobacteria for the production of hydrogen from water. Biochemical Society Transactions, 4, 1254–1259.CrossRefGoogle Scholar
  67. Roy, S., Kumar, K., Ghosh, S. and Das, D. (2014). Thermophilic biohydrogen production using pretreated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166.CrossRefGoogle Scholar
  68. Schirmer, A., Rude, M.A., Li, X.Z., Popova, E. and delCardayre, S.B. (2010). Microbial Biosynthesis of Alkanes. Science, 329, 559–562.CrossRefGoogle Scholar
  69. Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J. and Smith, A.J. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21, 277–286.CrossRefGoogle Scholar
  70. Shen, C.R., Lan, E.I., Dekishima, Y., Baez, A., Cho, K.M. and Liao, J.C. (2011). Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli. Applied and Environmental Microbiology, 77, 2905–2915.CrossRefGoogle Scholar
  71. Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A. and Ogawa, T. (2002). Genes essential to sodium-dependent bicarbonate transport in cyanobacteria—Function and phylogenetic analysis. Journal of Biological Chemistry, 277, 18658–18664.CrossRefGoogle Scholar
  72. Smith, S.A. and Tabita, F.R. (2003). Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1,5-bisphosphate carboxylase/oxygenase. Journal of Molecular Biology, 331, 557–569.CrossRefGoogle Scholar
  73. Stitt, M., Sulpice, R. and Keurentjes, J. (2010). Metabolic networks: How to identify key components in the regulation of metabolism and growth. Plant Physiology, 152, 428–444.CrossRefGoogle Scholar
  74. Summary report: World agriculture: towards 2015/2013 (2002). Food and Agriculture Organization of the United Nation, Rome.Google Scholar
  75. Tcherkez, G.G.B., Farquhar, G.D. and Andrews, T.J. (2006). Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proceedings of the National Academy of Sciences, USA, 103, 7246–7251.Google Scholar
  76. UK Department of Energy and Climate Change: Energy Trends March 2009, http://www.decc.gov.uk/en/content/cms/statistics/publications/publications.aspx.
  77. Um, B.H. and Kim, Y.S. (2009). Review: A chance for Korea to advance algal-biodiesel technology. Journal of Industrial and Engineering Chemistry, 15, 1–7.CrossRefGoogle Scholar
  78. Ungerer, J., Tao, L., Davis, M., Ghirardi, M., Maness, P.C. and Yu, J. (2012). Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environment Science, 5, 8998–9006.Google Scholar
  79. Varman, A.M., Xiao, Y., Pakrasi, H.B. and Tang, Y.J. (2013). Metabolic Engineering of Synechocystis sp. Strain PCC 6803 for Isobutanol Production. Applied Environmental Microbiology, 79, 908–914.CrossRefGoogle Scholar
  80. Walter, J.M., Greenfield, D. and Liphardt, J. (2010). Potential of light-harvesting proton pumps for bioenergy applications. Current Opinion in Biotechnology, 21, 265–270.CrossRefGoogle Scholar
  81. Waltz, E. (2009). Biotech’s green gold? Nature Biotechnology, 27, 15–18.CrossRefGoogle Scholar
  82. Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S. and Goodenough, U. (2009). Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starch-less Chlamydomonas reinhardtii. Eukaryotic Cell, 8, 1856–1868.CrossRefGoogle Scholar
  83. Wu, M., Mintz, M., Wang, M. and Arora, S. (2008). Consumptive Water Use in the Production of Bioethanol and Petroleum Gasoline. Argonne National Laboratory’s work report.Google Scholar
  84. Xu, Y., Guerra, L.T., Li, Z., Ludwig, M., Dismukes, G.C. and Bryant, D.A. (2013). Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: Cell factories for soluble sugars. Metabolic Engineering, 16, 56–67.CrossRefGoogle Scholar
  85. Yang, C., Hua, Q. and Shimizu, K. (2002). Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metabolic.Engineering, 4, 202–216.Google Scholar
  86. Yao, L., Qi, F., Tan, X. and Lu, X. (2014). Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnology for Biofuels, 7, 94.CrossRefGoogle Scholar
  87. Yoshino, F., Ikeda, H., Masukawa, H. and Sakurai, H. (2007). High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Marine Biotechnology, 9, 101–112.CrossRefGoogle Scholar

Copyright information

© Capital Publishing Company 2015

Authors and Affiliations

  1. 1.Microbial Chemistry, Department of Chemistry, Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations