Advertisement

On a New Conformal Functional for Simplicial Surfaces

  • Alexander I. BobenkoEmail author
  • Martin P. Weidner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9213)

Abstract

We introduce a smooth quadratic conformal functional and its weighted version
$$W_2=\sum _e \beta ^2(e)\quad W_{2,w}=\sum _e (n_i+n_j)\beta ^2(e),$$
where \(\beta (e)\) is the extrinsic intersection angle of the circumcircles of the triangles of the mesh sharing the edge \(e=(ij)\) and \(n_i\) is the valence of vertex i. Besides minimizing the squared local conformal discrete Willmore energy W this functional also minimizes local differences of the angles \(\beta \). We investigate the minimizers of this functionals for simplicial spheres and simplicial surfaces of nontrivial topology. Several remarkable facts are observed. In particular for most of randomly generated simplicial polyhedra the minimizers of \(W_2\) and \(W_{2,w}\) are inscribed polyhedra. We demonstrate also some applications in geometry processing, for example, a conformal deformation of surfaces to the round sphere. A partial theoretical explanation through quadratic optimization theory of some observed phenomena is presented.

Keywords

Delaunay Triangulation Intersection Angle Round Sphere Minimal Realization Simplicial Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ben-Israel, A., Greville, T.N.E.: Generalized Inverses, 2nd edn. Springer, New York (2003)zbMATHGoogle Scholar
  2. 2.
    Blaschke, W.: Vorlesungen über Differentialgeometrie III. Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (1929)Google Scholar
  3. 3.
    Bobenko, A.I.: A conformal energy for simplicial surfaces. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. Math. Sci. Res. Inst. Publ., vol. 52, pp. 135–145. Cambridge University Press, Cambridge (2005)Google Scholar
  4. 4.
    Bobenko, A.I.: Surfaces from circles. In: Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M. (eds.) Discrete Differential Geometry. Oberwolfach Semin., vol. 38, pp. 3–35. Birkhäuser, Basel (2008)CrossRefGoogle Scholar
  5. 5.
    Bobenko, A.I., Schröder, P.: Discrete Willmore flow. In: Desbrun, M., Pottmann, H. (eds.) Eurographics Symposium on Geometry Processing. pp. 101–110. Eurographics Association, Vienna, Austria (2005)Google Scholar
  6. 6.
    Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Des. 21(5), 427–445 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Crane, K.: Conformal geometry processing. Ph.D thesis, Caltech (2013)Google Scholar
  8. 8.
    Crane, K., Pinkall, U., Schröder, P.: Robust fairing via conformal curvature flow. ACM Trans. Graph. 32(4), 61:1–61:10 (2013)zbMATHCrossRefGoogle Scholar
  9. 9.
    Cvetković, D., Rowlinson, P., Simić, S.K.: Signless laplacians of finite graphs. Linear Algebra Appl. 423(1), 155–171 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hodgson, C.D., Rivin, I., Smith, W.D.: A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere. Bull. Amer. Math. Soc. (N.S.) 27(2), 246–251 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. 179, 683–782 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Munson, T., Sarich, J., Wild, S., Benson, S., Curfman McInnes, L.: TAO 2.0 users manual. Technical Memorandum ANL/MCS-TM-322, Argonne National Laboratory, Argonne, Illinois (2012)Google Scholar
  13. 13.
    Olischläger, N., Rumpf, M.: Two step time discretization of Willmore flow. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces XIII. LNCS, vol. 5654, pp. 278–292. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E.: Discrete quadratic curvature energies. Comput. Aided Geom. Des. 24(8–9), 499–518 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Willmore, T.J.: Riemannian Geometry. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1993) zbMATHGoogle Scholar
  16. 16.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995) zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut Für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations