Advertisement

Reflexive Symmetry Detection in Single Image

  • Zhongwei Tang
  • Pascal Monasse
  • Jean-Michel Morel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9213)

Abstract

Reflective symmetry can be used as a strong prior for many computer vision tasks. We interpret the planar reflective symmetry detection by using the property of an involution, which implies that two pairs of matched points are enough to define a planar reflective symmetry observed from a non-frontal viewpoint. This makes the reflective symmetry estimation as efficient as the classical homography estimation in binocular stereovision. This simple reflective symmetry computation can be plugged into any multiple model estimation to detect multiple symmetries at different scales and locations in images. The experimental results show that the proposed method is able to detect single and multiple reflective symmetries both in frontal and non fronto-parallel viewpoints.

Keywords

Reflective symmetry Perspective distortion Involution Multiple model estimation 

References

  1. 1.
    Cho, M., Lee, K.M.: Bilateral symmetry detection via symmetry-growing. In: Proceedings of BMVC (2009)Google Scholar
  2. 2.
    Cox, D.A., Little, J.B., O’shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185. Springer, New York (2005)MATHGoogle Scholar
  3. 3.
    Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach, vol. 34. Springer, Heidelberg (2007) Google Scholar
  4. 4.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)Google Scholar
  6. 6.
    Liu, Y., Hays, J., Xu, Y.Q., Shum, H.Y.: Digital papercutting. In: ACM SIGGRAPH 2005 Sketches. p. 99. ACM (2005)Google Scholar
  7. 7.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Computer Vision, 1999. The Proceedings of the seventh IEEE International Conference on. vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  8. 8.
    Loy, G., Eklundh, J.-O.: Detecting Symmetry and Symmetric Constellations of Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  9. 9.
    Rabin, J., Delon, J., Gousseau, Y., Moisan, L., et al.: Mac-ransac: a robust algorithm for the recognition of multiple objects. In: Proceedings of 3DPTV 2010 (2010)Google Scholar
  10. 10.
    Toldo, R., Fusiello, A.: Robust Multiple Structures Estimation with J-Linkage. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 537–547. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Tuytelaars, T., Turina, A., Van Gool, L.: Noncombinatorial detection of regular repetitions under perspective skew. Pattern Anal. Mach. Intell. IEEE Trans. 25(4), 418–432 (2003)CrossRefGoogle Scholar
  12. 12.
    Yu, G., Morel, J.M.: ASIFT: An algorithm for fully affine invariant comparison. Image Processing On Line 1 (2011) http://dx.doi.org/10.5201/ipol.2011.my-asift
  13. 13.
    Zhang, Z., Ganesh, A., Liang, X., Ma, Y.: Tilt: transform invariant low-rank textures. Int. J. Comput. Vis. 99(1), 1–24 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zhongwei Tang
    • 1
  • Pascal Monasse
    • 2
  • Jean-Michel Morel
    • 1
  1. 1.CMLA-ENS CachanCachanFrance
  2. 2.LIGM (UMR CNRS 8049), ENPCUniversité Paris-EstMarne-la-ValléeFrance

Personalised recommendations