Combination of Piecewise-Geodesic Curves for Interactive Image Segmentation

  • Julien MilleEmail author
  • Sébastien Bougleux
  • Laurent D. Cohen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9213)


Boundary-based interactive image segmentation methods aim to build a closed contour, very often using paths linking a set of user-provided landmark points, ordered along the contour of the object of interest. Among these methods, the geodesically-linked active contour (GLAC) model generates a piecewise-geodesic curve, by linking each pair of successive landmark points by a geodesic curve. As an important shortcoming, the geodesically linked active contour model in its initial formulation does not guarantee the curve to be simple. It may have multiple points, creating self-tangencies and self-intersections, which is inconsistent with respect to the purpose of segmentation. To overcome this issue, we study some properties of non-simple closed curves and introduce a novel energy term to quantity the amount of non-simplicity. We propose to extract a relevant contour from a set of possible paths, such that the resulting structure fits the image data and is simple. We develop a local search method to choose the best combination among possible paths, integrating the novel energy term.


Active Contour Double Point Minimal Path Active Contour Model Region Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material


  1. 1.
    Adams, C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. American Mathematical Society, Williamstown (2004)Google Scholar
  2. 2.
    Appia, V., Yezzi, A.: Active geodesics: region-based active contour segmentation with a global edge-based constraint. In: IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, pp. 1975–1980 (2011)Google Scholar
  3. 3.
    Benmansour, F., Cohen, L.: Fast object segmentation by growing minimal paths from a single point on 2D or 3D images. J. Math. Imaging Vis. 33(2), 209–221 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cohen, L., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)CrossRefGoogle Scholar
  7. 7.
    Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29 (2004)CrossRefGoogle Scholar
  8. 8.
    Falcão, A., Udupa, J., Miyazawa, F.: An ultra-fast user-steered image segmentation paradigm: live wire on the fly. IEEE Trans. Med. Imaging 19(1), 55–62 (2000)CrossRefGoogle Scholar
  9. 9.
    Gérard, O., Deschamps, T., Greff, M., Cohen, L.D.: Real-time interactive path extraction with on-the-fly adaptation of the external forces. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 807–821. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  10. 10.
    Kaul, V., Yezzi, A., Tsai, Y.: Detection of curves with unknown endpoints and arbitrary topology using minimal paths. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1952–1965 (2012)CrossRefGoogle Scholar
  11. 11.
    Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16(11), 2787–2801 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mille, J.: Narrow band region-based active contours and surfaces for 2D and 3D segmentation. Comput. Vis. Image Underst. 113(9), 946–965 (2009)CrossRefGoogle Scholar
  13. 13.
    Mille, J., Cohen, L.D.: Geodesically linked active contours: evolution strategy based on minimal paths. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 163–174. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Miranda, P., Falcão, A., Spina, T.: Riverbed: a novel user-steered image segmentation method based on optimum boundary tracking. IEEE Trans. Image Process. 21(6), 3042–3052 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mortensen, E., Barrett, W.: Interactive segmentation with intelligent scissors. Graph. Model. Image Process. 60(5), 349–384 (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)CrossRefGoogle Scholar
  17. 17.
    Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tsitsiklis, J.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Contr. 40(9), 1528–1538 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Whitney, H.: On regular closed curves in the plane. Compos. Math. 4, 276–284 (1937)MathSciNetGoogle Scholar
  20. 20.
    Williams, D., Shah, M.: A fast algorithm for active contours and curvature estimation. Comput. Vis. Graph. Image Process. Image Underst. 55(1), 14–26 (1992)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Julien Mille
    • 1
    Email author
  • Sébastien Bougleux
    • 2
  • Laurent D. Cohen
    • 3
  1. 1.CNRS Université Lyon 1, LIRIS UMR5202Université de LyonLyonFrance
  2. 2.CNRS, GREYC, UMR6072Université de Caen-Basse NormandieCaenFrance
  3. 3.CNRS, CEREMADE, UMR7534Université Paris DauphineParisFrance

Personalised recommendations