Adaptive Atlas of Connectivity Maps

  • Ali Mahdavi-AmiriEmail author
  • Faramarz Samavati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9213)


The Atlas of Connectivity Maps (ACM) is a data structure designed for semiregular meshes. These meshes can be divided into regular, grid-like patches, with vertex positions stored in a 2D array associated with each patch. Although the patches start at the same resolution, modeling objects with a variable level of detail requires adapting the patches to different resolutions and levels of detail. In this paper, we describe how to extend the ACM to support this type of adaptive subdivision. The new proposed structure for the ACM accepts patches at different resolutions connected through one-to-many attachments at the boundaries. These one-to-many attachments are handled by a linear interpolation between the boundaries or by forming a transitional quadrangulation/triangulation, which we call a zipper. This new structure for the ACM enables us to make the ACM more efficient by dividing the initial mesh into larger patches.


Atlas of connectivity maps Adaptive subdivision Data structure 


  1. 1.
    Mahdavi-Amiri, A., Samavati, F.: Atlas of connectivity maps. J. Comput. Graph. 39, 1–11 (2014)CrossRefGoogle Scholar
  2. 2.
    Mahdavi-Amiri, A., Harrison, E., Samavati, F.: Hexagonal connectivity maps for Digital Earth. Int. J. Digit. Earth 1–11 (2014)Google Scholar
  3. 3.
    De Floriani, L., Magillo, P.: Multiresolution Mesh Representation: Models and Data Structures. In: Iske, A., Quak, E., Floater, M.S. (eds.) Tutorials on Multiresolution in Geometric Modelling, pp. 363–418. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Kettner, L.: Halfedge data structures. In: CGAL User and Reference Manual (2013)Google Scholar
  5. 5.
    Shiue, L.-J., Peters, J.: A pattern-based data structure for manipulating meshes with regular regions. In: Proceedings of Graphics Interface 2005, GI 2005, pp. 153–160. Canadian Human-Computer Communications Society, Victoria, British Columbia (2005)Google Scholar
  6. 6.
    Shiue, L., Peters, J.: A realtime GPU subdivision kernel. In: Graphics Interfaces 2005, pp. 153–160 (2005)Google Scholar
  7. 7.
    Peters, J.: Patching Catmull-Clark meshes. In: SIGGRAPH 2000: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 255–258 (2000)Google Scholar
  8. 8.
    Bunnell, M.: Adaptive tessellation of subdivision surfaces with displacement mapping. In: Pharr, M., Fernando, R. (eds.) GPU Gems 2. Addison-Wesley Professional, Boston (2005)Google Scholar
  9. 9.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Publishers Inc., San Francisco (2005)Google Scholar
  10. 10.
    Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: SIGGRAPH 1997: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 259–268 (1997)Google Scholar
  11. 11.
    Weiler, K.: Edge-based data structures for solid modeling in curved-surface environments. IEEE Comput. Graph. Appl. 5, 21–40 (1985)CrossRefGoogle Scholar
  12. 12.
    Kettner, L.: Designing a data structure for polyhedral surfaces. In: SCG 1998: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, pp. 146–154 (1998)Google Scholar
  13. 13.
    Kraemer, P., Cazier, D., Bechmann, D.: Extension of half-edges for the representation of multiresolution subdivision surfaces. Vis. Comput. 25, 149–163 (2009)CrossRefGoogle Scholar
  14. 14.
    Nießner, M., Loop, C., Meyer, M., Derose, T.: Feature-adaptive GPU rendering of Catmull-Clark subdivision surfaces. ACM Trans. Graph. 31, 6:1–6:11 (2012)CrossRefGoogle Scholar
  15. 15.
    Müller, H., Jaeschke, R.: Adaptive subdivision curves and surfaces. In: Proceedings of the Computer Graphics International 1998 (CGI 1998), pp. 6:1–6:11 (1998)Google Scholar
  16. 16.
    Kobbelt, L.: \(\sqrt{3}\) subdivision. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 103–112 (2000)Google Scholar
  17. 17.
    Guiqing, L., Weiyin, M., Hujun, B.: \(\sqrt{2}\) subdivision for quadrilateral meshes. Vis. Comput. 20, 180–198 (2004)CrossRefGoogle Scholar
  18. 18.
    Pakdel, H., Samavati, F.: Incremental subdivision for triangle meshes. Int. J. Comput. Sci. Eng. 3, 80–92 (2007)CrossRefGoogle Scholar
  19. 19.
    Pakdel, H., Samavati, F.: Incremental Catmull-Clark subdivision. In: Fifth International Conference on 3-D Digital Imaging and Modeling 2005 (3DIM 2005), pp. 95–102 (2005)Google Scholar
  20. 20.
    Pakdel, H.-R., Samavati, F.F.: Incremental adaptive loop subdivision. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 237–246. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  21. 21.
    Andrew, R.B., Sherman, A.H., Weiser, A.: Some refinement algorithms and data structures for regular local mesh refinement. In: Stepleman, R., et al. (eds.) Scientific Computing, pp. 3–17. IMACS/North-Holland, Amsterdam (1983)Google Scholar
  22. 22.
    Panozzo, D., Puppo, E.: Implicit hierarchical quad-dominant meshes. Comput. Graph. Forum. 30, 1617–1629 (2011)zbMATHCrossRefGoogle Scholar
  23. 23.
    Li, G., Ma, W., Bao, H.: \(\sqrt{2}\) subdivision for quadrilateral meshes. Vis. Comput. 20, 180–198 (2004)CrossRefGoogle Scholar
  24. 24.
    Loop, C.: Smooth subdivision surfaces based on triangles. Masters thesis, Department of Mathematics, University of Utah (1987)Google Scholar
  25. 25.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput.-Aided Des. 10, 350–355 (1978)CrossRefGoogle Scholar
  26. 26.
    Heredia, V.M., Urrutia, J.: On convex quadrangulations of point sets on the plane. In: Akiyama, J., Chen, W.Y.C., Kano, M., Li, X., Yu, Q. (eds.) CJCDGCGT 2005. LNCS, vol. 4381, pp. 38–46. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  27. 27.
    Mahdavi-Amiri, A.: ACM: atlas of connectivity maps. Ph.D. thesis, Department of Computer Science, University of Calgary (2015)Google Scholar
  28. 28.
    Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D.: State of the art in quad meshing. In: Eurographics STARS (2012)Google Scholar
  29. 29.
    Har-Peled, S.: Geometric Approximation Algorithms, vol. 173. American Mathematical Society, Providence (2011)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of CalgaryCalgaryCanada

Personalised recommendations