Mass Smoothers in Geometric Multigrid for Isogeometric Analysis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9213)

Abstract

We investigate geometric multigrid methods for solving the large, sparse linear systems which arise in isogeometric discretizations of elliptic partial differential equations. In particular, we study a smoother which incorporates the inverse of the mass matrix as an iteration matrix, and which we call mass-Richardson smoother. We perform a rigorous analysis in a model setting and perform some numerical experiments to confirm the theoretical results.

Notes

Acknowledgments

This work was supported by the National Research Network “Geometry + Simulation” (NFN S117, 2012–2016), funded by the Austrian Science Fund (FWF).

References

  1. 1.
    Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math. Models Methods Appl. Sci. 16(07), 1031–1090 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \(h\)-\(p\)-\(k\)-refinement in isogeometric analysis. Numer. Math. 118(2), 271–305 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Buffa, A., Harbrecht, H., Kunoth, A., Sangalli, G.: BPX-preconditioning for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 265, 63–70 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Collier, N., Pardo, D., Dalcin, L., Paszynski, M., Calo, V.M.: The cost of continuity: a study of the performance of isogeometric finite elements using direct solvers. Comput. Methods Appl. Mech. Eng. 213–216, 353–361 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)CrossRefGoogle Scholar
  6. 6.
    Beirão da Veiga, L., Cho, D., Pavarino, L., Scacchi, S.: Overlapping Schwarz methods for isogeometric analysis. SIAM J. Num. Anal. 50(3), 1394–1416 (2012)CrossRefMATHGoogle Scholar
  7. 7.
    Beirão da Veiga, L., Cho, D., Pavarino, L., Scacchi, S.: BDDC preconditioners for isogeometric analysis. Math. Models Methods Appl. Sci. 23(6), 1099–1142 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Beirão da Veiga, L., Pavarino, L., Scacchi, S., Widlund, O., Zampini, S.: Isogeometric BDDC preconditioners with deluxe scaling. SIAM J. Sci. Comput. 36(3), A1118–A1139 (2014)CrossRefMATHGoogle Scholar
  9. 9.
    Gahalaut, K.P.S., Kraus, J.K., Tomar, S.K.: Multigrid methods for isogeometric discretization. Comput. Methods Appl. Mech. Eng. 253, 413–425 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gao, L., Calo, V.M.: Fast isogeometric solvers for explicit dynamics. Comput. Methods Appl. Mech. Eng. 274, 19–41 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hackbusch, W.: Multi-Grid Methods and Applications, vol. 4. Springer Series in Computational Mathematics. Springer-Verlag, Heidelberg (2003) Google Scholar
  12. 12.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kleiss, S.K., Pechstein, C., Jüttler, B., Tomar, S.: IETI - Isogeometric tearing and interconnecting. Comput. Methods Appl. Mech. Eng. 247–248, 201–215 (2012)CrossRefGoogle Scholar
  14. 14.
    Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods. Clarendon Press, Oxford (1998) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Computational MathematicsJohannes Kepler University LinzLinzAustria

Personalised recommendations