Deep Bones

  • Mark A. S. McMenamin
Part of the Springer Geology book series (SPRINGERGEOL)


What killed the giant ichthyosaurs of Berlin-Ichthyosaur State Park in Nevada? The leading hypothesis is that a giant octopus-like cephalopod attacked and killed the Shonisaurus ichthyosaurs and dragged their corpses to the Triassic sea floor. The Triassic Kraken hypothesis has survived all tests to date, and currently stands alone as the best explanation for the strange collection of large ichthyosaur bones at Berlin-Ichthyosaur State Park, Nevada.


Trace Fossil Fossil Site Vertebral Centra Marine Reptile Triassic Ammonite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams TL (2009) Deposition and taphonomy of the Hound Island Late Triassic vertebrate fauna: fossil preservation within subaqueous gravity flows. Palaios 24(9):603–615CrossRefGoogle Scholar
  2. Anderson RC (2006) Smart octopus? Festivus 38:7–9Google Scholar
  3. Anonymous (1954) Skeleton of 160-million-year-old ichthyosaur unearthed in Nevada: major geologic discovery made east of Fallon. Nevada State Journal (Reno, Nevada), 4 July, 1954, p. 8Google Scholar
  4. Anonymous (1980a) UNLV hires paleontologist to reconstruct reptile fossil. Elko Daily Free Press, 6 Aug 1980Google Scholar
  5. Anonymous (1980b) An ichthyosaur jigsaw puzzle. Nevada State Journal, 10 Aug 1980Google Scholar
  6. Anonymous (2011) Giant Kraken lair discovered. Accessed 18 Jun 2014
  7. Balini M et al (2014) The Carnian/Norian boundary succession at Berlin-Ichthyosaur State Park (Upper Triassic, central Nevada, USA) Pal Zeit. doi: 10.1007/s12543-104-0244-2
  8. Boardman RS et al (eds) (1987) Fossil invertebrates. Blackwell, Palo Alto, CaliforniaGoogle Scholar
  9. Bottjer DJ (2002) Berlin-Ichthyosaur: preserving some of the Earth’s largest marine vertebrates. In: Bottjer DJ et al (eds) Exceptional fossil preservation: a unique view on the evolution of marine life. Columbia Univ Press, New York, pp 243–250Google Scholar
  10. Camp CL (1980) Large ichthyosaurs from the Upper Triassic of Nevada. Paleontographica Abteilung A 170:139–200Google Scholar
  11. Camp CL (1981) Child of the rocks. Nevada Bureau of Mines and Geology, Reno, NevadaGoogle Scholar
  12. Dupras DL (1988) Ichthyosaurs of California, Nevada, and Oregon. Calif Geol 41(5):99–107Google Scholar
  13. Evans SD et al (2015) Dickinsonia liftoff: evidence of current derived morphologies. Palaeogeog Palaeoclim Palaeoecol. doi: 10.1016/j.palaeo.2015.02.006 Google Scholar
  14. Finn JK et al (2009) Defensive tool use in a coconut-carrying octopus. Current Biol 19(23):R1069–R1070CrossRefGoogle Scholar
  15. Foster JR (2003) Paleoecological analysis of the vertebrate fauna of the Morrison Formation (Upper Jurassic), Rocky Mountain region, USA. New Mex Mus Nat Hist Sci 23:1–95Google Scholar
  16. Gall JC (1983) Ancient sedimentary environments and the habitats of living organisms. Springer, BerlinCrossRefGoogle Scholar
  17. Geraci JR et al (1989) Humpback whales (Megaptera novaeangliae) fatally poisoned by dinoflagellate toxin. Can Jour Fish Aq Sci 46:1895–1898CrossRefGoogle Scholar
  18. Godfrey-Smith P, Lawrence M (2012) Long-term high-density occupation of a site by Octopus tetricus and possible site modification due to foraging behavior. Marine Freshwater Behav Phys 45(4):261–268Google Scholar
  19. Hallam A (1989) Great geological controversies, 2nd edn. Oxford Science Series, OxfordGoogle Scholar
  20. Hill N (2011) The biggest octopus ever?, Practical Fishkeeping, Accessed 9 Mar 2016
  21. Holger JA (1992) Taphonomy and paleoecology of Shonisaurus popularis (Reptilia: Ichthyosauria). Palaios 7:108–117CrossRefGoogle Scholar
  22. Hulse J (1957) Ichthyosaur park battle takes on another angle: Dr. Camp makes reply to Miller’s statements. Nevada State Journal (Reno, Nevada), November 11, 1957, p. 13Google Scholar
  23. Kear PB, Budd GE (2014) New perspectives on ancient marine reptiles. Geol Mag 151(1):5–6CrossRefGoogle Scholar
  24. Kelley NP et al (2015) Hunting the digital kraken: a multi-platform approach to digitizing an in-situ giant ichthyosaur death assemblage. Geol Soc Am Abs Prog 47(7):828Google Scholar
  25. Kidwell SM et al (1986) Conceptual framework for the analysis and classification of fossil concentrations. Palaios 1:228–238CrossRefGoogle Scholar
  26. Kiernan CR (2002) Stratigraphic distribution and habitat segregation of mosasaurs in the Upper Cretaceous of Western and Central Alabama, with an historical review of Alabama mosasaur discoveries. J Vert Paleo 22(1):91–103CrossRefGoogle Scholar
  27. Klug C et al (2015) Normal giants? Temporal and latitudinal shifts of Palaeozoic marine invertebrate gigantism and global change. Lethaia 48(2):267–288CrossRefGoogle Scholar
  28. Klug C et al (2016) Adaptations to squid-style high-speed swimming in Jurassic belemnitids. Biol Letters. doi: 10.1098/rsbl.2015.0877 Google Scholar
  29. Koehl MAR (1982) The interaction of moving water and sessile organisms. Sci Am 247(6):124–134CrossRefGoogle Scholar
  30. Lucas SG (ed) (2010) The Triassic timescale. Geological Society of London, LondonGoogle Scholar
  31. Lucas SG, González-León CM (1995) Ichthyosaurs from the Upper Triassic of Sonora and the biochronology of Triassic ichthyosaurs. In: Jacques-Ayala C et al (eds) Studies on the Mesozoic of Sonora and adjacent areas. Geol Soc Am, Boulder, Colorado, pp 17–20CrossRefGoogle Scholar
  32. Martill DM (1993) Soupy substrates: a medium for the exceptional preservation of ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany. Kaupia 2:77–97Google Scholar
  33. McMenamin MAS (2012) Evidence for a Triassic Kraken: unusual arrangement of bones at Ichthyosaur State Park in Nevada. 21st Cent Sci Tech 24(4):55–58Google Scholar
  34. McMenamin MAS, Hussey MC (2015) Triassic coprolites from the Luning Formation, Central Nevada. Geol Soc Am Abstr Prog 47(7):827Google Scholar
  35. McMenamin MAS, Schulte McMenamin DL (2011) Triassic kraken: the Berlin-Ichthyosaur death assemblage interpreted as a giant cephalopod midden. Geol Soc Am Abst Prog 43(5):310Google Scholar
  36. McRoberts CA (2000) A primitive Halobia (Bivalvia: Halobioidea) from the Triassic of northeast British Columbia. J Paleont 74(4):599–603CrossRefGoogle Scholar
  37. Merriam JC (1902) Triassic Ichthyopterygia from California and Nevada. University of California Publications, Department of Geology Bull 3(4):63–108Google Scholar
  38. Merriam JC (1908) Triassic Ichthyosauria, with special references to the American forms. Memoirs of the University of California, BerkeleyCrossRefGoogle Scholar
  39. Messina C, LaBarbara M (2004) Hydrodynamic behavior of brachiopod shells: experimental estimates and field observations. Palaios 19:441–450CrossRefGoogle Scholar
  40. Mikulás R (1998) Two different meanings of the term ‘bioglyph’ in the geological literature: history of the problem, present-day state, and possible resolution. Ichnos 6(3):211–213CrossRefGoogle Scholar
  41. Miller RG (1963) Letters to the Editor: Help for Ichthy. Nevada State Journal (Reno, Nevada), Dec 24, 1963, p. 4Google Scholar
  42. Montgomery S (2015) The soul of an octopus. Atria Books, New YorkGoogle Scholar
  43. Motani R (2000) Rulers of the Jurassic seas. Sci Am 283(6):52–59CrossRefGoogle Scholar
  44. Motani R (2009) The evolution of marine reptiles. Evol: Educ Outreach 2:224–235Google Scholar
  45. Motani R et al (1999) Large eyeballs in diving ichthyosaurs. Nature 402:747CrossRefGoogle Scholar
  46. Nichols KM, Silberling NJ (1977) Stratigraphy and depositional history of the Star Peak Group (Triassic), northwestern Nevada. Geol Soc Am Spec Paper 178:1–73CrossRefGoogle Scholar
  47. Nightingale A (2012) Who’s up for lunch? A gull-eating octopus in Victoria, BC.’s_up_for_lunch_a_gull_eating_octopus_in_victoria_bc. Accessed 10 Mar 2016
  48. Onthank KL et al (2005) Feeding ecology of the Giant Pacific Octopus. Unpublished student report, Walla Walla UniversityGoogle Scholar
  49. Onthank KL, Marsh NC (2005) Enteroctopus dofleini midden composition and characteristics near Deception Pass. Unpublished student report, Walla Walla University, WashingtonGoogle Scholar
  50. Pappas S (2013) Kraken rises: New fossil evidence revives sea monster debate. Live Science, Oct 31, 2013, Accessed 9 Mar 2016
  51. Quammen D (1995) Sea and Hypersea. Outside 10(4):43–50Google Scholar
  52. Reisdorf AG et al (2012) Float, explode or sink: postmortem fate of lung-breathing marine vertebrates. Palaeodiversity Palaeoenvironments 92:67–81CrossRefGoogle Scholar
  53. Reisdorf AG et al (2014) Reply to Ichthyosaur embryos outside the mother body: not due to carcass explosion but to carcass implosion by van Loon (2013). Palaeobiodiversity Palaeoenvironments 94:487–494CrossRefGoogle Scholar
  54. Rothschild BM et al (2012) Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs. Naturwissenschaften 99(6):443–448CrossRefGoogle Scholar
  55. Sandy MR, Stanley GD (1993) Late Triassic brachiopods from the Luning Formation, Nevada, and their palaeobiogeographical significance. Palaeontology 36(2):439–480Google Scholar
  56. Sazima I, Bastos de Almeida L (2008) The bird kraken: octopus preys on a sea bird at a oceanic island in the tropical West Atlantic. Mar Biodiv Rec. doi: 10.1017/S1755267206005458 Google Scholar
  57. Scheel D et al (2014) Octopus tetricus (Mollusca: Cephalopoda) as an ecosystem engineer. Scientia Marina doi:doi. doi: 10.3989/scimar.94973.15A Google Scholar
  58. Schubert JK et al (1992) Paleobiology of the oldest known articulate crinoid. Lethaia 25:97–110CrossRefGoogle Scholar
  59. Silberling NJ (1959) Pre-Tertiary stratigraphy and Upper Triassic paleontology of the Union District, Shoshone Mountains, Nevada. U S Geol Surv Prof Paper 322:1–67Google Scholar
  60. Stow DAV (2006) Sedimentary rocks in the field: a color guide. Academic Press, LondonGoogle Scholar
  61. Swancer B (2014) Attack of the giant octopuses. Accessed 10 Mar 2016
  62. Tanabe K et al (2006) Two coleoid jaws from the Upper Cretaceous of Hokkaido. Japan. J Paleont 80(1):138–145CrossRefGoogle Scholar
  63. Teichert C, Kummel B (1960) Size of endocerid cephalopods. Brevoria 128:1–7Google Scholar
  64. Tennesen M (1999) Another way of thinking: the octopus is smarter than your average invertebrate. Wildlife Conservation 102:36–41Google Scholar
  65. Thorne PM et al (2011) Resetting the evolution of marine reptiles in at the Triassic-Jurassic boundary. Proc Nat Acad Sci 108:8339–8344CrossRefGoogle Scholar
  66. Torrens H (1995) Mary Anning (1799–1847) of Lyme; ‘the greatest fossilist the World ever knew’. Brit J Hist Sci 25:257–284CrossRefGoogle Scholar
  67. Vrijhenhoek RC et al (2009) A remarkable diversity of bone-eating worms (Osedax; Siboglinidae; Annelida). BMC Biol doi: 10.1186/1741-7007-7-74
  68. Wani R, Ikeda H (2006) Planispiral cephalopod shells as a sensitive indicator of modern and ancient bottom currents: new data from flow experiments with modern Nautilus pompilius. Palaios 21:289–297CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Geology and GeographyMount Holyoke CollegeSouth HadleyUSA

Personalised recommendations