Decoding Relationships of Success Factors for Lean Information Technology Outsourcing
Abstract
Managing the continuous growth of modern-day IT developments and its transformation consequences in manufacturing and service organizations is arduous. It burdens organizations and supply chain management. For decades, supply chain managers have outsourced their non-specialized IT activities to third-parties. Competition compels organizations to look for ever more effective services from their suppliers. Solely outsourcing IT activities is no longer sufficient. Monitoring and optimization has become decisive. Lean, a successful philosophy to pursue continuous improvement, is extending its contributions from manufacturing and services to IT processes. This paper explores the success factors for the implementation of Lean in IT outsourcing relationships. It aids managers in designing a dashboard to optimize and monitor the implementation of Lean in IT outsourcing relationships. The causal-relationships among success factors in the context of a system, based on multiple case studies, is decoded through a causal-loop diagram and sensitivity analysis inspired by the system dynamics methodology.
Keywords
Critical success factors Lean Information technology outsourcing Simulation System dynamics1 Introduction
Contributions of recent information technology (IT) developments influence all organizational areas and challenge contemporary supply chain management (SCM)practices [2]. Today, coordination and integration of supply chain activities strongly depend on the performance of modern contributions of IT throughout the value chain [12]. Outsourcing IT value chain activities can be a driver of flexibility, agility and leanness of supply chains [13]. For this reason, for decades, managers have made the strategic decision to delegate their non-specialized operations, including IT activities to external professional suppliers, termed IT outsourcing [10]. Among those delegated activities are IT operations, support, development and maintenance. Although the practices of IT outsourcing have been thoroughly researched over the last two decades, many IT outsourcing clients remain dissatisfied [7]. This is demonstrated by low satisfaction rates, a high number of backsourcing decisions, and vendor switching [19]. The main problems clients experience are degradations of service over time, lacking vendor commitment, delayed deliveries or slow implementations [7].
Solely outsourcing IT activities is no longer sufficient. Monitoring and optimization of outsourcing relationships has become decisive to succeed in the market [5]. In doing so, Lean, as a successful philosophy to pursue continuous improvement, is extending its contributions from manufacturing and services to IT processes. When speaking of Lean, we refer to Womack and Jones (2003) [20] who describe Lean as a five-step management philosophy that, in essence, allows (1) organizations to specify value, i.e., what the customer is willing to pay for, (2) to identify all value-creating activities while eliminating those that do not, (3) to align these activities to achieve flow, (4) to let customers pull the value, and (5) to achieve and sustain perfection. This process is often termed Lean transformation [4]. From an IT outsourcing perspective, the focus of Lean lies on aiming to fulfill the desire of clients by suppliers. This is realized by precisely defining the needs of clients and optimizing value-adding activities through continuous improvement, while using the least amount of resources necessary. Reported motivations to implement Lean in IT outsourcing are shortening application maintenance times, achieving higher software release frequencies, stimulating co-innovation and learning, and reducing software development costs [3].
To realize successful continuous improvement in IT outsourcing relationships through Lean, managers should first know what factors matter in this context. Through multiple case studies conducted, critical success factors (CSFs) [15] have been identified that indicate the key areas managers should focus on, to successfully implement Lean in IT outsourcing relationships [3]. However, understanding how these factors directly and indirectly influence each other, including the overall outsourcing relationship, is not straightforward. In order to address this issue, system dynamics (SD) as a methodology is deemed suitable for decoding the intricate relationships among CSFs [1]. In this paper, the causal-relationships among identified CSFs is explored by utilizing a systems thinking approach and involves the creation of a causal-loop diagram (CLD) and performing subsequent simulations. The results of so-called sensitivity analysis simulation highlight the importance and influence of several CSFs and related factors on the overall IT outsourcing relationship performance.
The remainder of this paper continues with an overview of the identified CSFs in Sect. 2. Section 3 presents a description of the research approach, followed by Sect. 4 providing an elaboration upon the contribution of SD to decode the CSFs. Section 5 presents an analysis of the system model addressing several CSFs. Section 6 then concludes this paper by pointing out the contribution and limitation of this study, and provides directions for future research.
2 Critical Success Factors
According to Rockart (1979, p. 85) [14], CSFs are “the limited number of areas in which results, if they are satisfactory, will ensure successful competitive performance for the organization”. CFSs have a prominent place in Information Systems (IS) research and have been one of the earliest and most actively researched topics in the IS field [11]. For instance, it has been formerly used to analyze the implementation of IT outsourcing practices [8].
Overview of key characteristics of the cases studied.
Client | Industry | Supplier | Content | Size | Age |
---|---|---|---|---|---|
Client A | Insurance | Supplier E | Development | 100 | 2 |
Client A | Insurance | Supplier F | Maintenance | 50 | 4 |
Client A | Insurance | Supplier G | Development | 3 | 1.5 |
Client B | Telecoms | Supplier H | Maintenance & Development | 15 | 2.5 |
Client C | Government | Supplier I | Development | 5 | 1.5 |
Client D | Food | Supplier J | Maintenance & Development | 9 | 5 |
3 Research Method
An overview of all the consecutive research steps taken during this project, including their corresponding deliverables, is shown by means of a processdeliverable diagram (PDD) in Fig. 1. PDDs use UML and consist of two different, yet connected parts [18]. On the lefthand side, the activities conducted during this research project are modeled. The deliverables as a result of these activities, connected with dashed lines, are modeled on the right-hand side of the diagram.
Illustration of the research steps taken.
4 Contribution of System Dynamics
SD is a business process modeling methodology by making a use of systems thinking for getting a systematic perspective to complex interrelated problems with causalities [17]. This methodology was depicted by Jay Forrester at MIT in the 1960s. Systems thinking provides a problem solving approach by considering each problem as a part of an inclusive system rather than reacting to an isolated section [17]. In short, SD illustrates the causal relationships between the factors in the context of a system, i.e., direct and indirect relationships can be found by means of a CLD. Basically, interrelated causes and effects of elements in a system, representing mental models, lead to a positive or negative CLD; which aim at reinforcing or counteracting change in the system, respectively [17].
Causal-loop diagram showing the causal interrelationships among the identified success factors for Lean IT Outsourcing.
5 Sensitivity Analysis
Exemplary stock and flow diagram.
Sensitivity analysis scenarios.
Variable | Scenario | |||
---|---|---|---|---|
Base 1 | Base 2 | Base 3 | Base 4 | |
Lean Transformation AT | 1 week | 10 weeks | 5 weeks | 5 weeks |
Rate of transmitting and hearing the voice of end-customer | Constant=0.5 | Constant=0.5 | Constant=0.5 | \(\textit{N}^{\tilde{}} (\mu =0.5,\sigma =0.2)\) |
Sensitivity analysis diagrams.
6 Conclusion
In this paper, the emerging management challenge of dealing with the growing demand of IT in various business sectors is discussed. As aforementioned, today, IT is the backbone of any business to facilitate collaborating, networking, providing, and delivering products/services to customers. Therefore, outsourcing these operations, while optimizing the implementation of the processes, reduces a major burden on businesses. In doing so, recently, Lean management with its prominent methods and tools are combined with IT processes for the sake of optimization. 16 CSFs have been identified in prior literature based on case study research. To show how these CSFs affect a successful and efficient implementation of Lean IT outsourcing, the SD methodology is applied to decode the complex causalities between these factors and their effect on outsourcing success. The CLD defined the associations and unfolded the complex feedback loops among the elements in the management system. Moreover, a simulation model is developed to be used for policy experiments and sensitivity analysis, of which the results were presented. It could be seen that delay in any adjustment and transformation is crucial to the duration it takes to achieve success. Furthermore, the importance of VoC is illustrated by demonstrating its fluctuations in other CSFs. In summary, this study shed light upon the comprehension of the role of CSFs in the context of a management system, and elaborated upon the monitoring and tracking capability of managers in their IT outsourcing decisions. Nonetheless, development of an authentic SD simulation model depends on several aspects, including availability of historical data, configured reference modes, and precision of mathematical equations used in the model. SD models are therefore by themselves always subject to improvement and the same holds for the model in this paper. Future research will improve and adjust the equations and expand the CLD of CSFs to incorporate more details concerning outsourcing, IT, and Lean.
Footnotes
References
- 1.Akkermans, H., van Helden, K.: Vicious and virtuous cycles in erp implementation: a case study of interrelations between critical success factors. Eur. J. Inf. Syst. 11(1), 35–46 (2002)CrossRefGoogle Scholar
- 2.Bhakoo, V., Singh, P., Chia, A.: Supply chain structures shaping portfolio of technologies: exploring the impact of integration through the dual arcs framework. Int. J. Phy. Distrib. Logist. Manag. 45(4), 376–399 (2015)CrossRefGoogle Scholar
- 3.Blijleven, V., Gong, Y.: Motivations and critical success factors for lean it outsourcing (2015) (Submitted)Google Scholar
- 4.Cil, I., Turkan, Y.: An ANP-based assessment model for lean enterprise transformation. Int. J. Adv. Manufact. Technol. 64, 1113–1130 (2013)CrossRefGoogle Scholar
- 5.Elitzur, R., Gavious, A., Wensley, A.K.: Information systems outsourcing projects as a double moral hazard problem. Omega 40(3), 379–389 (2012)CrossRefGoogle Scholar
- 6.Found, P., Harrison, R.: Understanding the lean voice of the customer. Int. J. Lean Six Sigma 3(3), 251–267 (2012)CrossRefGoogle Scholar
- 7.Gorla, N., Somers, T.M.: The impact of it outsourcing on information systems success. Inf. Manage. 51(3), 320–335 (2014)CrossRefGoogle Scholar
- 8.Gottschalk, P., Solli-Sæther, H.: Critical success factors from it outsourcing theories: an empirical study. Ind. Manag. Data Syst. 105(6), 685–702 (2005)CrossRefGoogle Scholar
- 9.Gupta, A., Maranas, C.D.: Managing demand uncertainty in supply chain planning. Comput. Chem. Eng. 27(8), 1219–1227 (2003)CrossRefGoogle Scholar
- 10.Lacity, M.C., Hirschheim, R.A.: Information Systems Outsourcing; Myths, Metaphors, and Realities. Wiley, New York (1993)Google Scholar
- 11.Lu, X.H., Huang, L.H., Heng, M.S.: Critical success factors of inter-organizational information systemsa case study of cisco and xiao tong in china. Inf. Manag. 43(3), 395–408 (2006)CrossRefGoogle Scholar
- 12.Mehrsai, A., Karimi, H.R., Thoben, K.D.: Integration of supply networks for customization with modularity in cloud and make-to-upgrade strategy. Syst. Sci. Control Eng. Open Access J. 1(1), 28–42 (2013)CrossRefGoogle Scholar
- 13.Mohammed, I.R., Shankar, R., Banwet, D.: Creating flex-lean-agile value chain by outsourcing: an ism-based interventional roadmap. Bus. Proc. Manag. J. 14(3), 338–389 (2008)CrossRefGoogle Scholar
- 14.Rockart, J.: Chief executives define their own data needs. Harvard Bus. Rev. 57(2), 81–93 (1979)Google Scholar
- 15.Rockart, J., Crescenzi, A.: Engaging top management in information technology. Sloan Manag. Rev. 25, 4 (1984)Google Scholar
- 16.Salah, S., Rahim, A., Carretero, J.A.: Implementation of lean six sigma (LSS) in supply chain management (SCM): an integrated management philosophy. Int. J. Trans. Innov. Syst. 1(2), 138–162 (2011)CrossRefGoogle Scholar
- 17.Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World, vol. 19. Irwin/McGraw-Hill, Boston (2000)Google Scholar
- 18.van de Weerd, I., Brinkkemper, S.: Meta-Modeling for Situational Analysis and Design Methods. IGI Global, New York (2008)Google Scholar
- 19.Whitten, D., Leidner, D.: Bringing it back: an analysis of the decision to backsource or switch vendors. Decis. Sci. 37(4), 605–621 (2006)CrossRefGoogle Scholar
- 20.Womack, J., Jones, D.: Lean Thinking: Banish Waste and Create Wealth in Your Corporation, Revised and Updated. Productivity Press, Cambridge (2003)Google Scholar