Implementation of Multidimensional Databases with Document-Oriented NoSQL

  • M. Chevalier
  • M. El Malki
  • A. Kopliku
  • O. Teste
  • R. Tournier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9263)


NoSQL (Not Only SQL) systems are becoming popular due to known advantages such as horizontal scalability and elasticity. In this paper, we study the implementation of data warehouses with document-oriented NoSQL systems. We propose mapping rules that transform the multidimensional data model to logical document-oriented models. We consider three different logical translations and we use them to instantiate multidimensional data warehouses. We focus on data loading, model-to-model conversion and cuboid computation.


  1. 1.
    Bosworth, A., Gray, J., Layman, A., Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Technical report MSRTR-95-22, Microsoft Research, February 1995Google Scholar
  2. 2.
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD Rec. 26, 65–74 (1997)CrossRefGoogle Scholar
  3. 3.
    Chevalier, M., malki, M.E., Kopliku, A., Teste, O., Tournier, R.: Implementing multidimensional data warehouses into NoSQL. In: 17th International Conference on Entreprise Information Systems, April 2015Google Scholar
  4. 4.
    Chevalier, M., El Malki, M., Kupliku, A., Teste, O., Tournier, R.: Benchmark for OLAP on NoSQL technologies, comparing NoSQL multidimensional data warehousing solutions. In: 9th International Conference on Research Challenges in Information Science (RCIS). IEEE (2015)Google Scholar
  5. 5.
    Colliat, G.: Olap, relational, and multidimensional database systems. SIGMOD Rec. 25(3), 64–69 (1996)CrossRefGoogle Scholar
  6. 6.
    Cuzzocrea, A., Song, I.Y., Davis, K.C.: Analytics over large-scale multidimensional data: The big data revolution!. In: 14th International Workshop on Data Warehousing and OLAP DOLAP 2011, pp. 101–104. ACM (2011)Google Scholar
  7. 7.
    Dede, E., Govindaraju, M., Gunter, D., Canon, R.S., Ramakrishnan, L.: Performance evaluation of a MongoDB and hadoop platform for scientific data analysis. In: 4th ACM Workshop on Scientific Cloud Computing Science Cloud 2013, pp.13–20. ACM (2013)Google Scholar
  8. 8.
    Dehdouh, K., Boussaid, O., Bentayeb, F.: Columnar NoSQL star schema benchmark. In: Ait Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.) MEDI 2014. LNCS, vol. 8748, pp. 281–288. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: A conceptual model for data warehouses. Int. J. Coop. Inf. Syst. 7, 215–247 (1998)CrossRefGoogle Scholar
  10. 10.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd edn. Wiley, New York (2002)Google Scholar
  11. 11.
    Mior, M.J.: Automated schema design for NoSQL databases. In: SigMOD (2014)Google Scholar
  12. 12.
    O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and augmented fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 237–252. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Ravat, F., Teste, O., Tournier, R., Zuruh, G.: Algebraic and graphic languages for OLAP manipulations. IJDWM 4(1), 17–46 (2008)Google Scholar
  14. 14.
    Stonebraker, M.: New opportunities for new SQL. Commun. ACM 55(11), 10–11 (2012). CrossRefGoogle Scholar
  15. 15.
    Zhao, H., Ye, X.: A practice of TPC-DS multidimensional implementation on NoSQL database systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2013. LNCS, vol. 8391, pp. 93–108. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. Chevalier
    • 1
  • M. El Malki
    • 1
  • A. Kopliku
    • 1
  • O. Teste
    • 1
  • R. Tournier
    • 1
  1. 1.IRIT 5505Université de ToulouseToulouseFrance

Personalised recommendations