Glass+Skin: An Empirical Evaluation of the Added Value of Finger Identification to Basic Single-Touch Interaction on Touch Screens

  • Quentin RoyEmail author
  • Yves Guiard
  • Gilles Bailly
  • Éric Lecolinet
  • Olivier Rioul
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9299)


The usability of small devices such as smartphones or interactive watches is often hampered by the limited size of command vocabularies. This paper is an attempt at better understanding how finger identification may help users invoke commands on touch screens, even without recourse to multi-touch input. We describe how finger identification can increase the size of input vocabularies under the constraint of limited real estate, and we discuss some visual cues to communicate this novel modality to novice users. We report a controlled experiment that evaluated, over a large range of input-vocabulary sizes, the efficiency of single-touch command selections with vs. without finger identification. We analyzed the data not only in terms of traditional time and error metrics, but also in terms of a throughput measure based on Shannon’s theory, which we show offers a synthetic and parsimonious account of users’ performance. The results show that the larger the input vocabulary needed by the designer, the more promising the identification of individual fingers.


Input modality Multitouch Finger identification Evaluation methodology Throughput Information theory 


  1. 1.
    Au, O.K.-C., Tai, C.-L.: Multitouch finger registration and its applications. In: OZCHI 2010, pp. 41–48. ACM, New York, NY, USA (2010)Google Scholar
  2. 2.
    Bailly, G., Demeure, A., Lecolinet, E., Nigay, L.: MultiTouch menu (MTM). In: IHM 2008, pp. 165–168. ACM, New York, NY, USA (2008)Google Scholar
  3. 3.
    Bailly, G., Lecolinet, E., Guiard, Y.: Finger-count and radial-stroke shortcuts: 2 techniques for augmenting linear menus on multi-touch surfaces. In: CHI 2010, pp. 591–594. ACM, New York, NY, USA (2010)Google Scholar
  4. 4.
    Bailly, G., Müller, J., Lecolinet, E.: Design and evaluation of finger-count interaction: combining multitouch gestures and menus. IJHCS 70, 673–689 (2012)Google Scholar
  5. 5.
    Benko, H., Ishak, E.W., Feiner, S.: Cross-dimensional gestural interaction techniques for hybrid immersive environments. In: VR 2005, pp. 209–216 (2005)Google Scholar
  6. 6.
    Benko, H., Saponas, T.S., Morris, D., Tan, D.: Enhancing input on and above the interactive surface with muscle sensing. In: ITC, pp. 93–100. ACM, New York, NY, USA (2009)Google Scholar
  7. 7.
    Benko, H., Wilson, A.D., Baudisch, P.: Precise selection techniques for multi-touch screens. In: CHI 2006, pp. 1263–1272. ACM, New York, NY, USA (2006)Google Scholar
  8. 8.
    Buxton, W.: A three-state model of graphical input. In: Interact 1990, pp. 449–456. North-Holland Publishing Co. (1990)Google Scholar
  9. 9.
    Ewerling, P., Kulik, A., Froehlich, B.: Finger and hand detection for multi-touch interfaces based on maximally stable extremal regions. In: ITS 2012, pp. 173–182. ACM Press, New York, NY, USA (2012)Google Scholar
  10. 10.
    Ghomi, E., Huot, S., Bau, O., Beaudouin-Lafon, M., Mackay, W.E.: Arpège: learning multitouch chord gestures vocabularies. In: ITS 2013, pp. 209–218. ACM, New York, NY, USA (2013)Google Scholar
  11. 11.
    Goguey, A., Casiez, G., Pietrzak, T., Vogel, D., Roussel, N.: Adoiraccourcix: multi-touch command selection using finger identification. In: IHM 2014, pp. 28–37. ACM, New York, NY, USA (2014)Google Scholar
  12. 12.
    Goguey, A., Casiez, G., Vogel, D., Chevalier, F., Pietrzak, T., Roussel, N.: A Three-step interaction pattern for improving discoverability in finger identification techniques. In: UIST 2014 Adjunct, pp. 33–34. ACM, New York, NY, USA (2014)Google Scholar
  13. 13.
    Harrison, B.L., Fishkin, K.P., Gujar, A., Mochon, C., Want, R.: Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces. In: CHI 1998, pp. 17–24. ACM Press, New York, NY, USA (1998)Google Scholar
  14. 14.
    Harrison, C., Schwarz, J., Hudson, S.E.: TapSense: enhancing finger interaction on touch surfaces. In: UIST 2011, pp. 627–636. ACM, New York, NY, USA (2011)Google Scholar
  15. 15.
    Herot, C.F., Weinzapfel, G.: One-point touch input of vector information for computer displays. In: SIGGRAPH 1978, pp. 210–216. ACM, New York, NY, USA (1978)Google Scholar
  16. 16.
    Hinckley, K., Baudisch, P., Ramos, G., Guimbretière, F.: Design and analysis of delimiters for selection-action pen gesture phrases in Scriboli. In: CHI 2005, pp. 451–460. ACM, New York, NY, USA (2005) Google Scholar
  17. 17.
    Hinckley, K., Song, H.: Sensor synaesthesia: touch in motion, and motion in touch. In: CHI 2011, pp. 801–810. ACM, New York, NY, USA (2011)Google Scholar
  18. 18.
    Holz, C., Baudisch, P.: Fiberio: a touchscreen that senses fingerprints. In: UIST 2013, pp. 41–50. ACM Press, New York, NY, USA (2013)Google Scholar
  19. 19.
    Holz, C., Baudisch, P.: The generalized perceived input point model and how to double touch accuracy by extracting fingerprints. In: CHI 2010, pp. 581–590. ACM, New York, NY, USA (2010)Google Scholar
  20. 20.
    Kurtenbach, G.P.: The Design and Evaluation of Marking Menus. University of Toronto, Toronto (1993)Google Scholar
  21. 21.
    Kung, P., Küser, D., Schroeder, C., DeRose, T., Greenberg, D., Kin, K.: An augmented multi-touch system using hand and finger identification. In: CHI EA 2012, pp. 1431–1432. ACM, New York, NY, USA (2012)Google Scholar
  22. 22.
    Lee, S.K., Buxton, W., Smith, K.C.: A multi-touch three dimensional touch-sensitive tablet. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 21–25. ACM, New York, NY, USA (1985)Google Scholar
  23. 23.
    Lepinski, J., Grossman, T., Fitzmaurice, G.: The design and evaluation of multitouch marking menus. In: CHI 2010, pp. 2233–2242. ACM, New York, NY, USA (2010)Google Scholar
  24. 24.
    Li, Y.: Gesture search: a tool for fast mobile data access. In: UIST 2010, p. 87. ACM Press, New York, NY, USA (2010)Google Scholar
  25. 25.
    Malacria, S., Lecolinet, E., Guiard, Y.: Clutch-free panning and integrated pan-zoom control on touch-sensitive surfaces: the cyclostar approach. In: CHI 2010, pp. 2615–2624. ACM, New York, NY, USA (2010)Google Scholar
  26. 26.
    Marquardt, N., Kiemer, J., Greenberg, S.: What caused that touch?: expressive interaction with a surface through fiduciary-tagged gloves. In: ITS 2010, pp. 139–142. ACM, New York, NY, USA (2010)Google Scholar
  27. 27.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)CrossRefGoogle Scholar
  28. 28.
    Mizobuchi, S., Terasaki, S., Keski-Jaskari, T., Nousiainen, J., Ryynanen, M., Silfverberg, M.: Making an impression: force-controlled pen input for handheld devices. In: CHI 2005 Extended Abstracts, pp. 1661–1664. ACM, New York, NY, USA (2005)Google Scholar
  29. 29.
    Pook, S., Lecolinet, E., Vaysseix, G., Barillot, E.: Control menus: execution and control in a single interactor. In: CHI 2000, pp. 263–264. ACM, New York, NY, USA (2000)Google Scholar
  30. 30.
    Potter, R.L., Weldon, L.J., Shneiderman, B.: Improving the accuracy of touch screens: an experimental evaluation of three strategies. In: CHI 1988, pp. 27–32. ACM, New York, NY, USA (1988)Google Scholar
  31. 31.
    Ramos, G., Boulos, M., Balakrishnan, R.: Pressure widgets. In: CHI 2004, pp. 487–494. ACM, New York, NY, USA (2004)Google Scholar
  32. 32.
    Roudaut, A., Lecolinet, E., Guiard, Y.: MicroRolls: expanding touch-screen input vocabulary by distinguishing rolls vs. slides of the thumb. In: CHI 2009, pp. 927–936. ACM, New York, NY, USA (2009)Google Scholar
  33. 33.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sturman, D.J., Zeltzer, D.: A survey of glove-based input. IEEE Comput. Graph. Appl. 14, 30–39 (1994)CrossRefGoogle Scholar
  35. 35.
    Sugiura, A., Koseki, Y.: A user interface using fingerprint recognition: holding commands and data objects on fingers. In: UIST 1998, pp. 71–79. ACM, New York, NY, USA (1998)Google Scholar
  36. 36.
    Vogel, D., Baudisch, P.: Shift: a technique for operating pen-based interfaces using touch. In: CHI 2007, pp. 657–666. ACM, New York, NY, USA (2007)Google Scholar
  37. 37.
    Wagner, J., Lecolinet, E., Selker, T.: Multi-finger chords for hand-held tablets: recognizable and memorable. In: CHI 2014, pp. 2883–2892. ACM, New York, NY, USA (2014)Google Scholar
  38. 38.
    Wang, F., Cao, X., Ren, X., Irani, P.: Detecting and leveraging finger orientation for interaction with direct-touch surfaces. In: UIST 2009, p. 23. ACM Press, New York, NY, USA (2009)Google Scholar
  39. 39.
    Wang, F., Ren, X.: Empirical evaluation for finger input properties in multi-touch interaction. In: CHI 2009, pp. 1063–1072. ACM Press, New York, NY, USA (2009)Google Scholar
  40. 40.
    Wang, J., Canny, J.: FingerSense: augmenting expressiveness to physical pushing button by fingertip identification. In: CHI 2004 Extended Abstracts, pp. 1267–1270. ACM, New York, NY, USA (2004)Google Scholar
  41. 41.
    Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: CHI 2009, p. 1083. ACM Press, New York, NY, USA (2009)Google Scholar
  42. 42.
    Zhao, S., Balakrishnan, R.: Simple vs. compound mark hierarchical marking menus. In: UIST 2004, pp. 33–42. ACM, New York, NY, USA (2004)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Quentin Roy
    • 1
    • 2
    Email author
  • Yves Guiard
    • 1
  • Gilles Bailly
    • 1
  • Éric Lecolinet
    • 1
  • Olivier Rioul
    • 1
  1. 1.Telecom ParisTech, CNRS LTCI UMR 5141ParisFrance
  2. 2.GE HealthcareBucFrance

Personalised recommendations