3D-HUDD – Developing a Prototyping Tool for 3D Head-Up Displays

  • Nora BroyEmail author
  • Matthias Nefzger
  • Florian Alt
  • Mariam Hassib
  • Albrecht Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9299)


The ability of head-up displays (HUDs) to present information within the usual viewpoint of the user has led to a quick adoption in domains where attention is crucial, such as in the car. As HUDs employ 3D technology, further opportunities emerge: information can be structured and positioned in 3D space thus allowing important information to be perceived more easily and information can be registered with objects in the visual scene to communicate a relationship. This allows novel user interfaces to be built. As of today, however, no prototyping tools exist, that allow 3D UIs for HUDs to be sketched and tested prior to development. To close this gap, we report on the design and development of the 3D Head-Up Display Designer (3D-HUDD). In addition, we present an evaluation of the tool with 24 participants, comparing different input modalities and depth management modes.


Augmented Reality Free Mode Interaction Technique Task Completion Time Prototype Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baskinger, M.: Pencils before pixels: a primer in hand-generated sketching. Interactions 15(2), 28–36 (2008)CrossRefGoogle Scholar
  2. 2.
    Bercovich, I.A., Ivan, R., Little, J., Vilas-Boas, F.: Personal head-up display. University of Massachusetts Amherst (2012).
  3. 3.
    Broberg, D.K.: Guidance for horizontal image translation (hit) of high definition stereoscopic video production. In: Proceedings of the SPIE 2011. International Society for Optics and Photonics (2011)Google Scholar
  4. 4.
    Brooke, J.: Sus-a quick and dirty usability scale. Usability Eval. Ind. 189, 194 (1996)Google Scholar
  5. 5.
    Broy, N., Alt, F., Schneegass, S., Pfleging, B.: 3d displays in cars: exploring the user performance for a stereoscopic instrument cluster. In: Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Proceedings of the AutoUI 2014, pp. 2:1–2:9. ACM, New York (2014)Google Scholar
  6. 6.
    Broy, N., Höckh, S., Frederiksen, A., Gilowski, M., Eichhorn, J., Naser, F., Jung, H., Niemann, J., Schell, M., Schmid, A., Alt, F.: Exploring design parameters for a 3D head-up display. In: Proceedings of the PerDis 2014. ACM, New York (2014)Google Scholar
  7. 7.
    Broy, N., Schneegass, S., Alt, F., Schmidt, A.: Framebox and mirrorbox: Toolsand guidelines to support designers in prototyping interfaces for 3D displays. In: Proceedings of the CHI 2014. ACM, New York (2014)Google Scholar
  8. 8.
    Clothier, J.: Smart goggles easy on the eyes. (2005).
  9. 9.
    Coelho, J.C., Verbeek, F.J.: Pointing task evaluation of leap motion controller in 3D virtual environment. In: Creating the Difference, p. 78 (2014)Google Scholar
  10. 10.
    Fiambolis, P.: Virtual retinal display (vrd) technology. Virtual Retinal Display Technology. Naval Postgraduate School (2008).
  11. 11.
    Gellersen, H., Kortuem, G., Schmidt, A., Beigl, M.: Physical prototyping with smart-its. IEEE Pervasive Comput. 3(3), 74–82 (2004)CrossRefGoogle Scholar
  12. 12.
    Hassenzahl, M., Monk, A.: The inference of perceived usability from beauty. Hum.-Comput. Interact. 25(3), 235–260 (2010)CrossRefGoogle Scholar
  13. 13.
    Hilliges, O., Kim, D., Izadi, S., Weiss, M., Wilson, A.: Holodesk: direct 3D interactions with a situated see-through display. In: Proceedings of the CHI 2012. pp. 2421–2430. ACM (2012)Google Scholar
  14. 14.
    Julesz, B.: Foundations of Cyclopean Perception. University of Chicago Press, Chicago (1971)Google Scholar
  15. 15.
    Kim, J.O., Kim, M., Yoo, K.H.: Real-time hand gesture-based interaction with objects in 3D virtual environments. Int. J. Multimedia Ubiquit. Eng. 8(6), 339–348 (2013)CrossRefGoogle Scholar
  16. 16.
    Lake, M.: How it works: Retinal displays add a second data layer. New York Times (2006).
  17. 17.
    Lambooij, M., Fortuin, M., Heynderickx, I., Ijsselsteijn, W.: Visual discomfort and visual fatigue of stereoscopic displays: a review. J. Imaging Sci. Technol. 53(3), 030201-1–030201-14 (2009)CrossRefGoogle Scholar
  18. 18.
    Lauber, F., Böttcher, C., Butz, A.: Papar: paper prototyping for augmented reality. In: Proceedings of the AutomotiveUI 2014, pp. 1–6. ACM (2014)Google Scholar
  19. 19.
    Li, Y., Hong, J., Landay, J.: Topiary: a tool for prototyping location-enhanced apps. In: Proceedings of the UIST 2004. ACM, New York (2004)Google Scholar
  20. 20.
    Milicic, N., Lindberg, T.: Menu interaction in head-up displays. In: Human Factors and Ergonomic Society, Annual Meeting, Soesterberg, The Netherlands (2008)Google Scholar
  21. 21.
    Mogg, T.: High-tech airwave ski goggles from oakley bring augmented reality to the slopes (2012).
  22. 22.
    Rogers, Y., Sharp, H., Preece, J.: Interaction Design: Beyond Human-Computer Interaction. Wiley, New York (2011)Google Scholar
  23. 23.
    Salvucci, D., Zuber, M., Beregovaia, E., Markley, D.: Distract-r: rapid prototyping and evaluation of in-vehicle interfaces. In: Proceedings of the CHI 2005, pp. 581–589. ACM (2005)Google Scholar
  24. 24.
    Schild, J., Bölicke, L., LaViola, J., Masuch, M.: Creating and analyzingstereoscopic 3D graphical uis in digital games. In: Proceedings of the CHI 2013. ACM, New York (2013)Google Scholar
  25. 25.
    Schlachtbauer, T., Schermann, M., Krcmar, H.: Do prototypes hamper innovative behavior in developing it-based services? (2013)Google Scholar
  26. 26.
    Sefelin, R., Tscheligi, M., Giller, V.: Paper prototyping - what is it goodfor? In: Proceedings of the CHI EA 2003. ACM, New York (2003)Google Scholar
  27. 27.
    Sherman, D.: Toyota developing radical 3-d head-up display for production. Car and Driver (2014).
  28. 28.
    Shibata, T., Kim, J., Hoffman, D.M., Banks, M.S.: The zone of comfort: predicting visual discomfort with stereo displays. J. Vis. 11(8), 11 (2011)CrossRefGoogle Scholar
  29. 29.
    Snyder, C.: Paper prototyping: the fast and easy way to design and refine user interfaces. Morgan Kaufmann, San Francisco (2003)Google Scholar
  30. 30.
    Sohn, T., Dey, A.: icap: an informal tool for interactive prototyping of context-aware applications. In: Proceedings of the CHI EA 2003. ACM (2003)Google Scholar
  31. 31.
    Tonnis, M., Broy, V., Klinker, G.: A survey of challenges related to the design of 3D user interfaces for car drivers. In: Proceedings of the 3DUI 2006, pp. 127–134. IEEE (2006)Google Scholar
  32. 32.
    Tonnis, M., Klein, L., Klinker, G.: Perception thresholds for augmented reality navigation schemes in large distances. In: Proceedings of the ISMAR 2008, pp. 189–190. IEEE (2008)Google Scholar
  33. 33.
    Weigel, M., Boring, S., Steimle, J., Marquardt, N., Greenberg, S., Tang, A.: Projectorkit: easing rapid prototyping of interactive applications for mobile projectors. In: Proceedings of the MobileHCI 2013. ACM, New York (2013)Google Scholar
  34. 34.
    Werner, M.: Test driving the sportvue motorcycle hud. (2005).
  35. 35.
    Yoshida, T., Kamuro, S., Minamizawa, K., Nii, H., Tachi, S.: Repro3d: full-parallax 3D display using retro-reflective projection technology. In: ACM SIGGRAPH 2010 Emerging Technologies, p. 20. ACM (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Nora Broy
    • 1
    Email author
  • Matthias Nefzger
    • 2
  • Florian Alt
    • 2
  • Mariam Hassib
    • 2
  • Albrecht Schmidt
    • 3
  1. 1.BMW Research and TechnologyMunichGermany
  2. 2.Group for Media InformaticsUniversity of MunichMunichGermany
  3. 3.VIS, University of StuttgartStuttgartGermany

Personalised recommendations