Self-Actuated Displays for Vertical Surfaces

  • Patrick BaderEmail author
  • Valentin Schwind
  • Norman Pohl
  • Niels Henze
  • Katrin Wolf
  • Stefan Schneegass
  • Albrecht Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9299)


Most current devices are passive regarding their locations by being integrated in the environment or require to be carried when used in mobile scenarios. In this paper we present a novel type of self-actuated devices, which can be placed on vertical surfaces like whiteboards or walls. This enables vertical tangible interaction as well as the device interacting with the user through self-actuated movements. In this paper, we explore the application space for such devices by aggregating user-defined application ideas gathered in focus groups. Moreover, we implement and evaluate four interaction scenarios, discuss their usability and identify promising future use cases and improvements.


Self-actuated Display Vertical surface Mobile 



This work was supported by the graduate program Digital Media of the Universities of Stuttgart and Tübingen, and the Stuttgart Media University.


  1. 1.
    Bianchi, A., Oakley, I.: Designing tangible magnetic appcessories. In: Proceedings of TEI 2013, pp. 255–258 (2013)Google Scholar
  2. 2.
    Card, S.K., Mackinlay, J.D., Robertson, G.G.: A morphological analysis of the design space of input devices. ACM Trans. Inf. Syst. 9(2), 99–122 (1991)CrossRefGoogle Scholar
  3. 3.
    Dang, C.T., André, E.: Tabletopcars: Interaction with active tangible remote controlled cars. In: Proceedings of TEI 2013, pp. 33–40 (2013)Google Scholar
  4. 4.
    Fitzmaurice, G.W., Ishii, H., Buxton, W.A.S.: Bricks: Laying the foundations for graspable user interfaces. In: Proceedings of CHI 1995, pp. 442–449 (1995)Google Scholar
  5. 5.
    Frei, P., Su, V., Mikhak, B., Ishii, H.: Curlybot: Designing a new class of computational toys. In: Proceedings of CHI 2000, pp. 129–136 (2000)Google Scholar
  6. 6.
    Guerra, P.: Remotebunnies: Multi-agent phenomena mapping between physical environments. In: Proceedings of TEI 2013, pp. 347–348 (2013)Google Scholar
  7. 7.
    Guo, C., Young, J.E., Sharlin, E.: Touch and toys: New techniques for interaction with a remote group of robots. In: Proceedings of CHI 2009, pp. 491–500 (2009)Google Scholar
  8. 8.
    Hassenzahl, M., Monk, A.: The inference of perceived usability from beauty. Hum. Comput. Interact. 25(3), 235–260 (2010)CrossRefGoogle Scholar
  9. 9.
    Hennecke, F., Wimmer, R., Vodicka, E., Butz, A.: Vertibles: Using vacuum self-adhesion to create a tangible user interface for arbitrary interactive surfaces. In: Proceedings of TEI 2012, pp. 303–306 (2012)Google Scholar
  10. 10.
    Ishii, H., Ullmer, B.: Tangible bits: Towards seamless interfaces between people, bits and atoms. In: Proceedings of CHI 1997, pp. 234–241 (1997)Google Scholar
  11. 11.
    Jordà, S., Geiger, G., Alonso, M., Kaltenbrunner, M.: The reactable: Exploring the synergy between live music performance and tabletop tangible interfaces. In: Proceedings of TEI 2007, pp. 139–146 (2007)Google Scholar
  12. 12.
    Kato, J., Sakamoto, D., Igarashi, T.: Phybots: A toolkit for making robotic things. In: Proceedings of DIS 2012, pp. 248–257 (2012)Google Scholar
  13. 13.
    Kitzinger, J.: The methodology of focus groups: the importance of interaction between research participants. Sociol. Health Illn. 16(1), 103–121 (1994)CrossRefGoogle Scholar
  14. 14.
    Krzywinski, A., Mi, H., Chen, W., Sugimoto, M.: Robotable: A tabletop framework for tangible interaction with robots in a mixed reality. In: Proceedings of ACE 2009, pp. 107–114 (2009)Google Scholar
  15. 15.
    Kuznetsov, S., Paulos, E., Gross, M.D.: Wallbots: Interactive wall-crawling robots in the hands of public artists and political activists. In: Proceedings of DIS 2010, pp. 208–217 (2010)Google Scholar
  16. 16.
    Lee, J., Post, R., Ishii, H.: Zeron: Mid-air tangible interaction enabled by computer controlled magnetic levitation. In: Proceedings of UIST 2011, pp. 327–336 (2011)Google Scholar
  17. 17.
    Leitner, J., Haller, M.: Geckos: Combining magnets and pressure images to enable new tangible-object design and interaction. In: Proceedings of CHI 2011, pp. 2985–2994 (2011)Google Scholar
  18. 18.
    Liang, R.H., Cheng, K.Y., Chan, L., Peng, C.X., Chen, M.Y., Liang, R.H., Yang, D.N., Chen, B.Y.: Gaussbits: Magnetic tangible bits for portable and occlusion-free near-surface interactions. In: CHI EA 2013, pp. 2837–2838 (2013)Google Scholar
  19. 19.
    Nowacka, D., Ladha, K., Hammerla, N.Y., Jackson, D., Ladha, C., Rukzio, E., Olivier, P.: Touchbugs: Actuated tangibles on multi-touch tables. In: Proceedings of CHI 2013, pp. 759–762 (2013)Google Scholar
  20. 20.
    Pangaro, G., Maynes-Aminzade, D., Ishii, H.: The actuated workbench: Computer-controlled actuation in tabletop tangible interfaces. In: Proceedings of UIST 2002, pp. 181–190 (2002)Google Scholar
  21. 21.
    Patten, J., Ishii, H., Hines, J., Pangaro, G.: Sensetable: A wireless object tracking platform for tangible user interfaces. In: Proceedings of CHI 2001, pp. 253–260 (2001)Google Scholar
  22. 22.
    Pinhanez, C.: The everywhere displays projector: a device to create ubiquitous graphical interfaces. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 315–331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Rosenfeld, D., Zawadzki, M., Sudol, J., Perlin, K.: Physical objects as bidirectional user interface elements. IEEE Comput. Graph. Appl. 24(1), 44–49 (2004)CrossRefGoogle Scholar
  24. 24.
    Schneegass, S., Alt, F., Scheible, J., Schmidt, A.: Midair displays: Concept and first experiences with free-floating pervasive displays. In: Proceedings of PerDis 2014, pp. 27:27–27:31 (2014)Google Scholar
  25. 25.
    Seifert, J., Boring, S., Winkler, C., et al.: Hover pad: Interacting with autonomous and self-actuated displays in space. In: Proceedings of UIST 2014, pp. 139–147 (2014)Google Scholar
  26. 26.
    Shiotani, S., Tomonaka, T., Kemmotsu, K., Asano, S., Oonishi, K., Hiura, R.: World’s first full-fledged communication robot “wakamaru” capable of living with family and supporting persons. Mitsubishi Juko Giho 43(1), 44–45 (2006)Google Scholar
  27. 27.
    Somanath, S., Sharlin, E., Sousa, M.: Integrating a robot in a tabletop reservoir engineering application. In: Proceedings of HRI 2013, pp. 229–230, March 2013Google Scholar
  28. 28.
    Sugimoto, M., Fujita, T., Mi, H., Krzywinski, A.: Robotable2: A novel programming environment using physical robots on a tabletop platform. In: Proceedings of ACE 2011, pp. 10:1–10:8 (2011)Google Scholar
  29. 29.
    Tominaga, J., Kawauchi, K., Rekimoto, J.: Around me: A system with an escort robot providing a sports player’s self-images. In: Proceedings of AH 2014, pp. 43:1–43:8 (2014)Google Scholar
  30. 30.
    Underkoffler, J., Ishii, H.: Urp: A luminous-tangible workbench for urban planning and design. In: Proceedings of CHI 1999, pp. 386–393 (1999)Google Scholar
  31. 31.
    Weiss, M., Schwarz, F., Jakubowski, S., Borchers, J.: Madgets: Actuating widgets on interactive tabletops. In: Proceedings of UIST 2010, pp. 293–302 (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Patrick Bader
    • 1
    • 2
    Email author
  • Valentin Schwind
    • 1
    • 2
  • Norman Pohl
    • 1
    • 2
  • Niels Henze
    • 1
  • Katrin Wolf
    • 1
  • Stefan Schneegass
    • 1
  • Albrecht Schmidt
    • 1
  1. 1.VISUniversity of StuttgartStuttgartGermany
  2. 2.Stuttgart Media UniversityStuttgartGermany

Personalised recommendations