Human-Computer Interaction

INTERACT 2015: Human-Computer Interaction – INTERACT 2015 pp 384-401 | Cite as

Interactions Under the Desk: A Characterisation of Foot Movements for Input in a Seated Position

  • Eduardo Velloso
  • Jason Alexander
  • Andreas Bulling
  • Hans Gellersen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9296)

Abstract

We characterise foot movements as input for seated users. First, we built unconstrained foot pointing performance models in a seated desktop setting using ISO 9241-9-compliant Fitts’s Law tasks. Second, we evaluated the effect of the foot and direction in one-dimensional tasks, finding no effect of the foot used, but a significant effect of the direction in which targets are distributed. Third, we compared one foot against two feet to control two variables, finding that while one foot is better suited for tasks with a spatial representation that matches its movement, there is little difference between the techniques when it does not. Fourth, we analysed the overhead caused by introducing a feet-controlled variable in a mouse task, finding the feet to be comparable to the scroll wheel. Our results show the feet are an effective method of enhancing our interaction with desktop systems and derive a series of design guidelines.

Keywords

Foot-based interfaces Fitts’s law Interaction techniques 

References

  1. 1.
    English, W.K., Engelbart, D.C., Berman, M.L.: Display-selection techniques for text manipulation. Trans. Hum. Factors Electron. HFE-8, 5–15 (1967)CrossRefGoogle Scholar
  2. 2.
    Augsten, T., Kaefer, K., Meusel, R., Fetzer, C., Kanitz, D., Stoff, T., Becker, T., Holz, C., Baudisch, P.: Multitoe: high-precision interaction with back-projected floors based on high-resolution multi-touch input. In: UIST, pp. 209–218. ACM (2010)Google Scholar
  3. 3.
    Scott, J., Dearman, D., Yatani, K., Truong, K.N.: Sensing foot gestures from the pocket. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, pp. 199–208. ACM, New York (2010)Google Scholar
  4. 4.
    Simeone, A., Velloso, E., Alexander, J., Gellersen, H.: Feet movement in desktop 3D interaction. In: Proceedings of the 2014 IEEE Symposium on 3D User Interfaces (2014)Google Scholar
  5. 5.
    Pakkanen, T., Raisamo, R.: Appropriateness of foot interaction for non-accurate spatial tasks. In: CHI 2004 EA, pp. 1123–1126. ACM (2004)Google Scholar
  6. 6.
    Dearman, D., Karlson, A., Meyers, B., Bederson, B.: Multi-modal text entry and selection on a mobile device. In: Proceedings of Graphics Interface 2010, pp. 19–26. Canadian Information Processing Society (2010)Google Scholar
  7. 7.
    Garcia, F.P., Vu, K.-P.L.: Effects of practice with foot- and hand-operated secondary input devices on performance of a word-processing task. In: Smith, M.J., Salvendy, G. (eds.) HCI International 2009, Part I. LNCS, vol. 5617, pp. 505–514. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Pearson, G., Weiser, M.: Of moles and men: the design of foot controls for workstations. In: Procedings of CHI, pp. 333–339. ACM, New York (1986)Google Scholar
  9. 9.
    Sellen, A.J., Kurtenbach, G.P., Buxton, W.A.: The prevention of mode errors through sensory feedback. Hum.-Comput. Interact. 7, 141–164 (1992)CrossRefGoogle Scholar
  10. 10.
    LaViola, Jr., J.J., Feliz, D.A., Keefe, D.F., Zeleznik, R.C.: Hands-free multi-scale navigation in virtual environments. In: Proceedings of the 2001 Symposium on Interactive 3D graphics, pp. 9–15. ACM (2001)Google Scholar
  11. 11.
    Carrozza, M.C., Persichetti, A., Laschi, C., Vecchi, F., Lazzarini, R., Vacalebri, P., Dario, P.: A wearable biomechatronic interface for controlling robots with voluntary foot movements. Trans. Mechatron. 12, 1–11 (2007)CrossRefGoogle Scholar
  12. 12.
    Han, T., Alexander, J., Karnik, A., Irani, P., Subramanian, S.: Kick: investigating the use of kick gestures for mobile interactions. In: Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 29–32. ACM Press, New York (2011)Google Scholar
  13. 13.
    Paelke, V., Reimann, C., Stichling, D.: Foot-based mobile interaction with games. In: Proceedings of the 2004 ACM SIGCHI International Conference on Advances in computer entertainment technology, pp. 321–324. ACM (2004)Google Scholar
  14. 14.
    Hockman, J.A., Wanderley, M.M., Fujinaga, I.: Real-time phase vocoder manipulation by runner’s pace. In: Proceedings of the International Conference on New Interfaces for Musical Expression (NIME) (2009)Google Scholar
  15. 15.
    Lopes, P.A.S.A., Fernandes, G., Jorge, J.: Trainable DTW-based classifier for recognizing feet-gestures. In: Proceedings of RecPad (2010)Google Scholar
  16. 16.
    Richter, S., Holz, C., Baudisch, P.: Bootstrapper: recognizing tabletop users by their shoes. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1249–1252. ACM (2012)Google Scholar
  17. 17.
    Paradiso, J.A., Hsiao, K., Benbasat, A.Y., Teegarden, Z.: Design and implementation of expressive footwear. IBM Syst. 39, 511–529 (2000)CrossRefGoogle Scholar
  18. 18.
    Kume, Y., Shirai, A., Sato, M.: Foot interface: fantastic phantom slipper. In: ACM SIGGRAPH 1998 Conference Abstracts and Applications, p. 114 (1998)Google Scholar
  19. 19.
    Drury, C.G.: Application of Fitts’ Law to foot-pedal design. Hum. Factors J. Hum. Factors Ergon. Soc. 17, 368–373 (1975)Google Scholar
  20. 20.
    Hoffmann, E.R.: A comparison of hand and foot movement times. Ergonomics 34, 397–406 (1991)CrossRefMATHGoogle Scholar
  21. 21.
    Springer, J., Siebes, C.: Position controlled input device for handicapped: experimental studies with a footmouse. Int. J. Ind. Ergon. 17, 135–152 (1996)CrossRefGoogle Scholar
  22. 22.
    Hinckley, K., Jacob, R., Ware, C.: Inputoutput devices and interaction techniques. In: Tucker, A.B. (ed.) CRC Computer Science and Engineering Handbook, pp. 1–32. CRC Press LLC, Boca Raton (2004)Google Scholar
  23. 23.
    Wobbrock, J.O., Shinohara, K., Jansen, A.: The effects of task dimensionality, endpoint deviation, throughput calculation, and experiment design on pointing measures and models. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1639–1648. ACM (2011)Google Scholar
  24. 24.
    Soukoreff, R.W., MacKenzie, I.S.: Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts’ law research in HCI. Int. J. Hum Comput Stud. 61, 751–789 (2004)CrossRefGoogle Scholar
  25. 25.
    Natapov, D., Castellucci, S.J., MacKenzie, I.S.: ISO 9241-9 evaluation of video game controllers. In: Proceedings of Graphics Interface 2009, pp. 223–230. Canadian Information Processing Society (2009)Google Scholar
  26. 26.
    Zhong, K., Tian, F., Wang, H.: Foot menu: using heel rotation information for menu selection. In: 2011 15th Annual International Symposium on Wearable Computers (ISWC), pp. 115–116. IEEE (2011)Google Scholar
  27. 27.
    Norman, D.A., Nielsen, J.: Gestural interfaces: a step backward in usability. Interactions 17, 46–49 (2010)CrossRefGoogle Scholar
  28. 28.
    Benko, H.: Beyond flat surface computing: challenges of depth-aware and curved interfaces. In: Proceedings of Multimedia, pp. 935–944. ACM (2009)Google Scholar
  29. 29.
    Dargent-Paré, C., De Agostini, M., Mesbah, M., Dellatolas, G.: Foot and eye preferences in adults: relationship with handedness, sex and age. Cortex 28, 343–351 (1992)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Eduardo Velloso
    • 1
  • Jason Alexander
    • 1
  • Andreas Bulling
    • 2
  • Hans Gellersen
    • 1
  1. 1.Infolab21, School of Computing and CommunicationsLancaster UniversityLancasterUK
  2. 2.Perceptual User Interfaces GroupMax Planck Institute for InformaticsSaabrückenGermany

Personalised recommendations