UbiBeam: Exploring the Interaction Space for Home Deployed Projector-Camera Systems

  • Jan Gugenheimer
  • Pascal Knierim
  • Christian Winkler
  • Julian Seifert
  • Enrico Rukzio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9298)


Until now, research on projector-camera systems had only concentrated on user-interaction within a lab-environment. As a result of this, there are very limited insights into how such systems could be used in everyday life. It was therefore our aim to investigate requirements and use cases of home deployed projector-camera systems. To this purpose, we conducted an in-situ user study involving 22 diverse households. Several different categories were specified using a grounded theory approach; placement, projection surface, interaction modality and content/use cases. Based on the analysis of our results, we created UbiBeam; a projector-camera system designed for domestic use. The system has several different features including automatic focus adjustment with depth sensing which enables ordinary surfaces to be transformed into touch-sensitive information displays. We developed UbiBeam as an open source platform and provide construction plans, 3D-models and source code to the community. We encourage researchers to use it as a research platform and conduct more field studies on projector-camera systems.


Form Factor Remote Control Interaction Modality Living Room Projection Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank all study participants. This work was conducted within the Transregional Collaborative Research Centre SFB/TRR 62 Companion-Technology of Cognitive Technical Systems funded by the German Research Foundation (DFG).


  1. 1.
    Lumo interactive projector. Accessed 18 April 2015
  2. 2.
    Benko, H., Jota, R., Wilson, A.: Miragetable: freehand interaction on a projected augmented reality tabletop. In: Proceedings of the CHI 2012, pp. 199–208. ACM, New York, NY, USA (2012)Google Scholar
  3. 3.
    Butz, A., Krger, A., Peepholes, A., Lenses, M.: A generalized peephole metaphor for augmented reality and instrumented environments. In: Workshop on Software Technology for Augmented Reality Systems (2003)Google Scholar
  4. 4.
    Cao, X., Forlines, C., Balakrishnan, R.: Multi-user interaction using handheld projectors. In: Proceedings of the UIST 2007, pp. 43–52. ACM, New York, NY, USA (2007)Google Scholar
  5. 5.
    Cauchard, J., Fraser, M., Han, T., Subramanian, S.: Steerable projection: exploring alignment in interactive mobile displays. Pers. Ubiquit. Comput. 16(1), 27–37 (2012)CrossRefGoogle Scholar
  6. 6.
    Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. Sage, New York (2008)Google Scholar
  7. 7.
    Dachselt, R., Häkkilä, J., Jones, M., Löchtefeld, M., Rohs, M., Rukzio, E.: Pico projectors: firefly or bright future? Interactions 19(2), 24–29 (2012)CrossRefGoogle Scholar
  8. 8.
    Gugenheimer, J., Knierim, P., Seifert, J., Rukzio, E.: Ubibeam: an interactive projector-camera system for domestic deployment. In: Proceedings of the ITS 2014, pp. 305–310. ACM, New York, NY, USA (2014)Google Scholar
  9. 9.
    Hardy, J.: Reflections: a year spent with an interactive desk. Interactions 19(6), 56–61 (2012)CrossRefGoogle Scholar
  10. 10.
    Hardy, J., Ellis, C., Alexander, J., Davies, N.: Ubi displays: a toolkit for the rapid creation of interactive projected displays. In: The International Symposium on Pervasive Displays (2013)Google Scholar
  11. 11.
    Harrison, C., Benko, H., Wilson, A.D.: Omnitouch: wearable multitouch interaction everywhere. In: Proceedings of the UIST 2011, pp. 441–450. ACM, New York, NY, USA (2011)Google Scholar
  12. 12.
    Huber, J.: A research overview of mobile projected user interfaces. Informatik-Spektrum 37(5), 464–473 (2014)CrossRefGoogle Scholar
  13. 13.
    Huber, J., Steimle, J., Liao, C., Liu, Q., Mühlhäuser, M.: Lightbeam: interacting with augmented real-world objects in pico projections. In: Proceedings of the MUM 2012, pp. 16:1–16:10. ACM, New York, NY, USA (2012)Google Scholar
  14. 14.
    Jones, B.R., Benko, H., Ofek, E., Wilson, A.D.: Illumiroom: peripheral projected illusions for interactive experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 869–878. ACM, New York, NY, USA (2013)Google Scholar
  15. 15.
    Karitsuka, T., Sato, K.: A wearable mixed reality with an on-board projector. In: Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR 2003, pp. 321– 322. IEEE Computer Society, Washington, DC, USA (2003)Google Scholar
  16. 16.
    Linder, N., Maes, P.: Luminar: portable robotic augmented reality interface design and prototype. In: Adjunct Proceedings of the UIST 2010, pp. 395–396. ACM, New York, NY, USA (2010)Google Scholar
  17. 17.
    Mistry, P., Maes, P.: Sixthsense: a wearable gestural interface. In: ACM SIGGRAPH ASIA 2009 Sketches, SIGGRAPH ASIA 2009, pp. 11:1–11:1. ACM, New York, NY, USA (2009)Google Scholar
  18. 18.
    Molyneaux, D., Izadi, S., Kim, D., Hilliges, O., Hodges, S., Cao, X., Butler, A., Gellersen, H.: Interactive environment-aware handheld projectors for pervasive computing spaces. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.) Pervasive 2012. LNCS, vol. 7319, pp. 197–215. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Pinhanez, C.: The everywhere displays projector: a device to create ubiquitous graphical interfaces. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 315–331. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  20. 20.
    Raskar, R., Brown, M.S., Yang, R., Chen, W.-C., Welch, G., Towles, H., Seales, B., Fuchs, H.: Multi-projector displays using camera-based registration. In: Proceedings of the VIS 1999, pp. 161–168. IEEE Computer Society Press, Los Alamitos, CA, USA (1999)Google Scholar
  21. 21.
    Raskar, R., van Baar, J., Beardsley, P., Willwacher, T., Rao, S., Forlines, C.: iLamps: geometrically aware and self-configuring projectors. In: ACM SIGGRAPH 2003 Papers, pp. 809–818. ACM, New York, NY, USA (2003)Google Scholar
  22. 22.
    Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., Fuchs, H.: The office of the future: a unified approach to image-based modeling and spatially immersive displays. In: Proceedings of the SIGGRAPH 1998, pp. 179–188. ACM, New York, NY, USA (1998)Google Scholar
  23. 23.
    Rukzio, E., Holleis, P., Gellersen, H.: Personal projectors for pervasive computing. IEEE Pervasive Comput. 11(2), 30–37 (2012)CrossRefGoogle Scholar
  24. 24.
    Weiser, M.: The computer for the 21st Century. In: Baecker, R.M., Grudin, J., Buxton, W.A.S., Greenberg, S. (eds.) Human-Computer Interaction, pp. 933–940. Morgan Kaufmann Publishers Inc., San Francisco (1995)Google Scholar
  25. 25.
    Willis, K.D., Poupyrev, I., Hudson, S.E., Mahler, M.: Sidebyside: ad-hoc multi-user interaction with handheld projectors. In: Proceedings of the UIST 2011, pp. 431–440. ACM, New York, NY, USA (2011)Google Scholar
  26. 26.
    Wilson, A., Benko, H., Izadi, S., Hilliges, O.: Steerable augmented reality with the beamatron. In: Proceedings of the UIST 2012, pp. 413–422. ACM, New York, NY, USA (2012)Google Scholar
  27. 27.
    Wilson, A.D.: Using a depth camera as a touch sensor. In: Proceedings of the ITS 2010, pp. 69–72. ACM, New York, NY, USA (2010)Google Scholar
  28. 28.
    Wilson, A.D., Benko, H.: Combining multiple depth cameras and projectors for interactions on, above and between surfaces. In: Proceedings of the UIST 2010, pp. 273–282. ACM, New York, NY, USA (2010)Google Scholar
  29. 29.
    Winkler, C., Seifert, J., Dobbelstein, D., Rukzio, E.: Pervasive information through constant personal projection: the ambient mobile pervasive display (amp-d). In: Proceedings of the CHI 2014, pp. 4117–4126. ACM, New York, NY, USA (2014)Google Scholar
  30. 30.
    Xiao, R., Harrison, C., Hudson, S.E.: Worldkit: rapid and easy creation of ad-hoc interactive applications on everyday surfaces. In: Proceedings of the CHI 2013, pp. 879–888. ACM, New York, NY, USA (2013)Google Scholar
  31. 31.
    Yoo, H.W., Kim, W.H., Park, J.W., Lee, W.H., Chung, M.J.: Real-time plane detection based on depth map from kinect. In: Proceedings of ISR 2013, pp. 1–4, October 2013Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Jan Gugenheimer
    • 1
  • Pascal Knierim
    • 2
  • Christian Winkler
    • 1
  • Julian Seifert
    • 3
  • Enrico Rukzio
    • 1
  1. 1.Ulm UniversityUlmGermany
  2. 2.University of StuttgartStuttgartGermany
  3. 3.European Patent OfficeMunichGermany

Personalised recommendations