A Science Mapping Analysis of the Literature on Software Product Lines

  • Ruben Heradio
  • Hector Perez-Morago
  • David Fernandez-Amoros
  • Francisco Javier Cabrerizo
  • Enrique Herrera-Viedma
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 532)


To compete in the global marketplace, manufacturers try to differentiate their products by focusing on individual customer needs. Fulfilling this goal requires companies to shift from mass production to mass customization. In the context of software development, software product line engineering has emerged as a cost effective approach to developing families of similar products by support high levels of mass customization. This paper analyzes the literature on software product lines from its beginnings to 2014. A science mapping approach is applied to identify the most researched topics, and how the interest in those topics has evolved along the way.


Software product lines Bibliometrics Science mapping 



The authors would like to acknowledge FEDER financial support from the Project TIN2013-40658-P, and also the financial support fromthe Andalusian Excellence Project TIC-5991.


  1. 1.
    Bachmann, F., Clements, P.C.: Variability in software product lines. Technical report, Software Engineering Institute. CMU/SEI-2005-TR-012 (2005)Google Scholar
  2. 2.
    Bailon-Moreno, R., Jurado-Alameda, E., Ruiz-Baños, R.: The scientific network of surfactants: structural analysis. J. Am. Soc. Inform. Sci. Technol. 57, 949–960 (2006)CrossRefGoogle Scholar
  3. 3.
    Bauin, S., Michelet, B., Schweighoffer, M., Vermeulin, P.: Using bibliometrics in strategic analysis: understanding chemical reactions at the CNRS. Scientometrics 22(1), 113–137 (1991)CrossRefGoogle Scholar
  4. 4.
    Benavides, D., Segura, S., Ruiz-Corts, A.: Automated analysis of feature models 20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Börner, K., Chen, C., Boyack, K.W.: Visualizing knowledge domains. Annu. Rev. Inf. Sci. Technol. 37(1), 179–255 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Callon, M., Courtial, J., Laville, F.: Co-word analysis as a tool for describing the network of interactions between basic and technological research: the case of polymer chemsitry. Scientometrics 22(1), 155–205 (1991)CrossRefGoogle Scholar
  7. 7.
    Callon, M., Law, J., Rip, A.: Qualitative scientiometrics. In: Callon, M., Law, J., Rip, A. (eds.) Mapping the Dynamics of Science and Technology, pp. 103–123. Palgrave Macmillan Ltd, New York (1986)Google Scholar
  8. 8.
    Cobo, M., López-Herrera, A., Herrera-Viedma, E., Herrera, F.: An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J. Informetrics 5(1), 146–166 (2011)CrossRefGoogle Scholar
  9. 9.
    Cobo, M., Lopez-Herrera, A., Herrera-Viedma, E., Herrera, F.: Science mapping software tools: review, analysis, and cooperative study among tools. J. Am. Soc. Inform. Sci. Technol. 62(7), 1382–1402 (2011)CrossRefGoogle Scholar
  10. 10.
    Cobo, M., Lopez-Herrera, A., Herrera-Viedma, E., Herrera, F.: Scimat: a new science mapping analysis software tool. J. Am. Soc. Inform. Sci. Technol. 63(8), 1609–1630 (2012)zbMATHCrossRefGoogle Scholar
  11. 11.
    Coulter, N., Monarch, I., Konda, S.: Software engineering as seen through its research literature: a study in co-word analysis. J. Am. Soc. Inform. Sci. 49(13), 1206–1223 (1998)CrossRefGoogle Scholar
  12. 12.
    van Eck, N.J., Waltman, L.: How to normalize cooccurrence data? An analysis of some well-known similarity measures. J. Am. Soc. Inform. Sci. Technol. 60, 1635–1651 (2009)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kandylas, V., Upham, S.P., Ungar, L.H.: Analyzing knowledge communities using foreground and background clusters. ACM Trans. Knowl. Discov. Data 4(2), Article 7, 1–35 (2010)Google Scholar
  14. 14.
    Law, J., Bauin, S., Courtial, J.P., Whittaker, J.: Policy and the mapping of scientific change: a co-word analysis of research into environmental acidification. Scientometrics 14(3–4), 251–264 (1988)CrossRefGoogle Scholar
  15. 15.
    van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer, Berlin (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lopez-Herrejon, R.E., Linsbauer, L., Egyed, A.: A systematic mapping study of search-based software engineering for software product lines. Inf. Softw. Technol. 61, 33–51 (2015)CrossRefGoogle Scholar
  17. 17.
    Lopez-Herrera, A., Cobo, M., Herrera-Viedma, E., Herrera, F., Bailon-Moreno, R., Jimenez-Contreras, E.: Visualization and evolution of the scientific structure of fuzzy sets research in Spain. Inf. Res. 14, 1–23 (2009)Google Scholar
  18. 18.
    Sternitzke, C., Bergmann, I.: Similarity measures for document mapping: a comparative study on the level of an individual scientist. Scientometrics 78(1), 113–130 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ruben Heradio
    • 1
  • Hector Perez-Morago
    • 1
  • David Fernandez-Amoros
    • 1
  • Francisco Javier Cabrerizo
    • 1
  • Enrique Herrera-Viedma
    • 2
  1. 1.Departamento de Ingeniería de Software y Sistemas InformáticosUNEDMadridSpain
  2. 2.Departamento de Ciencias de la Computación e Inteligencia ArtificialUniversidad de GranadaGranadaSpain

Personalised recommendations