Recasting the Local and the Global: The Three Lives of Protein Sequencing in Spanish Biomedical Research (1967–1995)

Part of the Sociology of the Sciences Yearbook book series (SOSC, volume 29)

Abstract

This chapter explores how protein sequencing – a technique enabling the determination of the fine structure of protein chains – circulated across different biomedical fields in Spain during the last third of the twentieth century. By focusing on three individual scientists, I argue that protein sequencing had three distinct Spanish lives and was inextricably linked to the biographies of its users. Between 1967 and 1995, protein sequencing shifted from an aid to prevent agrarian plagues in Franco’s dictatorship to a promising diagnostic tool in the transition towards democracy and, finally, an out-of-fashion technique overshadowed by the emergence of recombinant DNA methods. My proposed three lives challenge over-simplistic comparative frameworks and suggest that the local configuration of a new scientific technique should not be sought in its similarities or idiosyncratic differences with a given ‘global’. Protein sequencing in Spain was rather shaped by the researchers’ will of constructing a professional space of their own and achieving a complex equilibrium between the fulfilment of local demands and the engagement with what was considered international and cutting-edge at each historical time.

Keywords

History Spain Protein Sequencing DNA Biomedicine Chemistry Circulation Global Periphery 

References

  1. Abelson, J. 1980. A revolution in biology. Science 209: 1319–1321.CrossRefGoogle Scholar
  2. Abir-Am, P. 1987. The biotheoretical gathering, trans-disciplinary authority and the incipient legitimation of molecular biology in the 1930s: New perspective on the historical sociology of science. History of Science 25: 1–70.CrossRefGoogle Scholar
  3. Camprubí, L. 2010. One grain, one nation: Rice genetics and the corporate state in early Francoist Spain (1939–1952). Historical Studies in the Natural Sciences 40: 499–531.CrossRefGoogle Scholar
  4. De Chadarevian, S. 1996. Sequences, conformation, information: Biochemists and molecular biologists in the 1950s. Journal of the History of Biology 29: 361–386.CrossRefGoogle Scholar
  5. De Chadarevian, S., and J.-P. Gaudillière. 1996. The tools of the discipline: Biochemists and molecular biologists. Journal of the History of Biology 29: 327–330.CrossRefGoogle Scholar
  6. De Chadarevian, S., and B. Strasser. 2002. Molecular biology in postwar Europe: Towards a ‘glocal’ picture. Studies in History and Philosophy of Biological and Biomedical Sciences 33: 361–365.CrossRefGoogle Scholar
  7. Fernández-Sousa, J.M., J.G. Gavilanes, A.M. Municio, J.A. Paredes, A. Pérez-Aranda, and R. Rodriguez. 1975. Primary structure of cytochrome c from the insect Ceratitis capitata. Biochimica et Biophysica Acta (BBA) – Protein Structure 393: 358–367.CrossRefGoogle Scholar
  8. Freije, J., S. Laín, E. Viñuela, and C. López Otín. 1993. Nucleotide sequence of a nucleoside triphosphate phosphohydrolase gene from African swine fever virus. Virus Research 30: 63–72.CrossRefGoogle Scholar
  9. García-Sancho, M. 2010. A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-1977. Journal of the History of Biology 43: 265–323.CrossRefGoogle Scholar
  10. García-Sancho, M. 2012. Biology, computing and the history of molecular sequencing: From proteins to DNA (1945-2000). Basingstoke: Palgrave-Macmillan.CrossRefGoogle Scholar
  11. Gavilanes, J., M.A. Lizarbe, A.M. Municio, M. Olmo, and M. Onaderra. 1982. Biología molecular del colágeno. Colágeno del insecto ceratitis capitata. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales 76: 719–750.Google Scholar
  12. Gavilanes, J., C. López Otín, F. Gavilanes, and E. Méndez. 1984. Conformational studies of the human complex-forming glycoprotein, heterogeneous in charge: Protein HC. Biochemistry 23: 1234–1238.CrossRefGoogle Scholar
  13. Gavroglu, K. 1999. The sciences in the European periphery during the enlightenment. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  14. Gomez Rodriguez, A., and A. Canales Serrano. 2009. The rebels and the new Spanish scientific culture. Journal of War and Culture Studies 2: 321–333.CrossRefGoogle Scholar
  15. Harwood, J. 1993. Styles of scientific thought: The German genetics community. Chicago: University of Chicago Press.Google Scholar
  16. Howlett, P., and M. Morgan (eds.). 2010. How well do facts travel? Cambridge: Cambridge University Press.Google Scholar
  17. Jordan, K., and M. Lynch. 1998. The dissemination, standardization and routinization of a molecular biological technique. Social Studies of Science 28: 773–800.CrossRefGoogle Scholar
  18. López Otín, C., J. Freije, F. Parra, E. Méndez, and E. Viñuela. 1990. Mapping and sequence of the gene coding for protein p72, the major capsid protein of African swine fever virus. Virology 175: 477–484.CrossRefGoogle Scholar
  19. Martín-Municio, A. 1969. Proyección biológica de los lípidos. Madrid: Real Academia de Ciencias Exactas, Físicas y Naturales.Google Scholar
  20. Mellado, R., E. Méndez, E. Viñuela, and M. Salas. 1977. Order of the two major head protein genes of bacteriophage phi 29 of Bacillus subtilis. Journal of Virology 24: 378–382.Google Scholar
  21. Méndez, E., and J. Gavilanes. 1975. Fluorometric detection of peptides after column chromatography or on paper: o-phthalaldehyde and fluorescamine. Analytical Biochemistry 72: 473–479.CrossRefGoogle Scholar
  22. Méndez, E., B. Frangione, and S. Kochwa. 1973. Chemical typing of human immunoglobulins E and D. FEBS Letters 33: 4–6.CrossRefGoogle Scholar
  23. Muñoz, E., and J. Sebastián. 2008. Exploración de la política científica en España: de la espeleología a la cartografía. In Cien años de política científica en España, ed. M.J. Santesmases and A. Romero de Pablos, 357–384. Madrid: Fundación BBVA.Google Scholar
  24. Nieto-Galán, A. 1998. The images of science in modern Spain. Rethinking the “polemica”. In The sciences in the European periphery during the enlightenment, ed. K. Gavroglu, 65–86. Dordrecht: Kluwer Academic Publishers.Google Scholar
  25. Ophir, A., and S. Shapin. 1991. The place of knowledge a methodological survey. Science in Context 4: 3–22.Google Scholar
  26. Ortuño, J. 2003. Notas contra la amnesia en su primer cuarto de siglo. In XXV Aniversario Hospital Ramón y Cajal, ed. V. Authors, 13–33. Madrid: Editores Médicos.Google Scholar
  27. Pairolí, M. 1996. Joan Oró. Barcelona: Fundació Catalana per a la Recerca.Google Scholar
  28. Papanelopoulou, F., A. Nieto-Galán, and E. Perdiguero (eds.). 2008. Popularizing science and technology in the European periphery, 1800-2000. Surrey: Ashgate Publishers.Google Scholar
  29. Rodríguez, R., M.A. Lizarbe, and J. Gavilanes. 1990. El árbol de las proteínas y otros relatos científicos. In Departamento de Bioquímica: Profesor Ángel Martín-Municio (1966-1989), ed. J. Gavilanes, 83–95. Madrid: Universidad Complutense de Madrid.Google Scholar
  30. Ryle, A.P., F. Sanger, L.F. Smith, and R. Kitai. 1955. The disulphide bonds of insulin. Biochemical Journal 60: 541–556.CrossRefGoogle Scholar
  31. Salas, M. 2007. 40 years with bacteriophage Phi29. Annual Review of Microbiology 61: 1–22.CrossRefGoogle Scholar
  32. Santesmases, M.J. 2000. Severo Ochoa and the biomedical sciences in Spain under Franco, 1959-1975. Isis 91: 706–734.CrossRefGoogle Scholar
  33. Santesmases, M.J. 2002. National politics and international trends: EMBO and the making of molecular biology in Spain (1960-1975). Studies in History and Philosophy of Biological and Biomedical Sciences 33: 473–487.CrossRefGoogle Scholar
  34. Santesmases, M. 2006. Peace propaganda and biomedical experimentation: Influential uses of radioisotopes in endocrinology and molecular genetics in Spain (1947–1971). Journal of the History of Biology 39: 765–794.CrossRefGoogle Scholar
  35. Santesmases, M.J. 2013. Cereals, chromosomes and colchicine: Crop varieties at the Estación Experimental Aula Dei and human cytogenetics, 1948-1958. In Human heredity in the twentieth century, ed. B. Gausemeier, S. Müller-Wille, and E. Ramsden, 127–140. London: Pickering and Chatto.Google Scholar
  36. Santesmases, M.J., and C. Gradmann. 2011. Circulation of antibiotics: An introduction. Dynamis 31: 293–303.CrossRefGoogle Scholar
  37. Saraiva, T., and N. Wise. 2010. Autarky/Autarchy: Genetics, food production, and the building of Fascism. Historical Studies in the Natural Sciences 40: 419–428.CrossRefGoogle Scholar
  38. Schaffer, S., and S. Shapin. 1985. Leviathan and the air pump: Hobbes, boyle and the experimental life. New Jersey: Princeton University Press.Google Scholar
  39. Secord, J.A. 2004. Knowledge in transit. Isis 95: 654–672.CrossRefGoogle Scholar
  40. Shapin, S., and A. Thackray. 1974. Prosopography as a research tool in history of science: The British scientific community 1700-1900. History of Science 12: 1–28.CrossRefGoogle Scholar
  41. Strasser, B. 2010. Collecting, comparing, and computing sequences: the making of Margaret O. Dayhoff’s “Atlas of protein sequence and structure”, 1954-1965. Journal of the History of Biology 43: 623–660.CrossRefGoogle Scholar
  42. Suárez-Díaz, E., and A. Barahona. 2013. Post-war and post-revolution: Medical genetics and social anthropology in Mexico, 1945-70. In Human heredity in the twentieth century, ed. B. Gausemeier, S. Müller-Wille, and E. Ramsden, 101–112. London: Pickering and Chatto.Google Scholar
  43. Subrahmanyam, S. 1997. Connected histories: Notes towards a reconfiguration of early modern Eurasia. Modern Asian Studies 31: 735–762.CrossRefGoogle Scholar
  44. Werner, M., and B. Zimmermann. 2006. Beyond comparison: histoire croisée and the challenge of reflexivity. History and Theory 45: 30–50.CrossRefGoogle Scholar
  45. Wright, S. 1994. Molecular politics: Developing American and British regulatory policy for genetic engineering, 1972-1982. Chicago: University of Chicago Press.Google Scholar
  46. Yáñez, R., J. Rodríguez, M. Nogal, L. Yuste, C. Enríquez, J. Rodríguez, and E. Viñuela. 1995. Analysis of complete nucleotide sequence of African swine fever virus. Virology 208: 249–278.CrossRefGoogle Scholar
  47. Yi, D. 2008. Cancer, viruses and mass migration: Paul Berg’s venture into eukaryotic biology and the advent of recombinant DNA research and technology, 1967-1980. Journal of the History of Biology 41: 589–636.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Science, Technology and Innovation StudiesUniversity of EdinburghEdinburghUK

Personalised recommendations