Advertisement

Determination of Torsional Stresses in Shafts: From Physical Analogies to Mathematical Models

  • Augusto Ajovalasit
  • Vincenzo Nigrelli
  • Giuseppe PitarresiEmail author
  • Gabriele Virzì Mariotti
Chapter
Part of the History of Mechanism and Machine Science book series (HMMS, volume 31)

Abstract

This paper presents the historical development of methods used for the study of torsional stresses in shafts. In particular, the paper covers both analog methods, especially those based on electrical analogies proposed circa 1925, and numerical methods, especially finite difference methods (FDM), finite element methods (FEM) and boundary element methods (BEM).

References

  1. Ajovalasit A, Nigrelli V, Pitarresi G, Virzì Mariotti G (2013) Torsional stress concentrations in shafts: from electrical analogies to numerical methods. IFToMM workshop on history of mechanism and machine science, University of Palermo, 21st–22nd Nov 2013. Proceedings published by Edizioni Scientifiche e Artistiche, Naples 01/31/2014. ISBN: 9788895430843Google Scholar
  2. Ajovalasit A, Nigrelli V, Pitarresi G, Virzì Mariotti G (2014) On the history of torsional stress concentrations in shafts: from electrical analogies to numerical methods. J Strain Anal Eng Des 49:452–466CrossRefGoogle Scholar
  3. Barone G, Pirrotta A, Santoro R (2011) Comparison among three boundary element methods for torsion problems: CPM, CVBEM, LEM. Eng Anal Boundary Elem 35(7):895–907zbMATHMathSciNetCrossRefGoogle Scholar
  4. Beadle CW, Conway HD (1963) Conducting-sheet analogy for stress concentrations in twisted structural sections. Exp Mech 3(8):198–200CrossRefGoogle Scholar
  5. Biezeno CB, Koch JJ (1933) Über einige Beispiele zur elektrischen Spannugs-bestimmung. Ingenieur—Archiv 4:384–393zbMATHCrossRefGoogle Scholar
  6. Brebbia CA (1980) The boundary element method for engineers. Pentech Press, LondonGoogle Scholar
  7. Chen F, (1993) Solution of torsional problems by BEM. Transactions on modelling and simulation, vol. 1, WIT PressGoogle Scholar
  8. Cranz H (1933) Experimentelle Losung von Torsions Aufgaben. Ingenieur—Archiv 4:506–509zbMATHCrossRefGoogle Scholar
  9. Darılmaz K, Orakdogen E, Girgin K (2007) Torsional rigidity of arbitrarily shaped composite sections by hybrid finite element approach. Steel Compos Struct 7:241–251CrossRefGoogle Scholar
  10. Den Hartog JP, McGivern JG (1935) On the hydrodynamic analogy of torsion J Appl Mech 2(2):A46–A48Google Scholar
  11. Ely JF, Zienkiewicz OC (1960) Torsion of compound bars-a relaxation solution. Int J Mech Sci 1(4):356–365CrossRefGoogle Scholar
  12. Fessler H, Rogers C, Stanley P (1969) Shouldered plates and shafts in tension and torsion. J Strain Anal 4(3):169CrossRefGoogle Scholar
  13. Fuerst A, Sprysl H (2000) Determination of polar moment of inertia and stress concentration of shafts under torsion load with arbitrary cross section. Int Ser Adv Boundary Elem 8:109–116Google Scholar
  14. Giordano G (1940a) Ricerca delle tensioni in alberi soggetti a torsione. apparecchiature per la determinazione sperimentale di esse negli alberi di rivoluzione. Tecnica Italiana, febbraio 1940Google Scholar
  15. Giordano G (1940b) Coefficiente di forma per alberi con un risalto soggetti a torsione. Tecnica Italiana, aprile 1940Google Scholar
  16. Giordano G (1940c) Fattori di forma per alberi con variazione di diametro soggetti a torsione. Tecnica Italiana, maggio 1940Google Scholar
  17. Griffith AA, Taylor GI (1917) The use of soap films in solving torsion problems. Proc Inst Mech Eng 1917:755–809CrossRefGoogle Scholar
  18. Griffith AA, Taylor GI (1918) The application of soap films to the determination of the torsion and flexure of hollow shafts. Technical report of the advisory committee for aeronautics1917; vol. 392Google Scholar
  19. Henshell RD (1975) A survey of the use of the finite element method in stress analysis. In: Stanley P (ed) Computing development in experimental and numerical stress analysis, Applied Science Publishers, London, pp 1–19Google Scholar
  20. Hetényi M (ed) (1950) Handbook of experimental stress analysis. John Wiley, New YorkGoogle Scholar
  21. Higgins TJ (1945a) Analogic experimental methods in stress analysis as exemplified by Saint-Venant torsion problem. Proc SESA II(2):17–27Google Scholar
  22. Higgins TJ (1945b) Stress analysis of shafting as exemplified by Saint-Venant torsion problem. Proc SESA III(1):94–101Google Scholar
  23. Huth JH (1950) Torsional stress concentrations in angle and square tube fillets. J Appl Mech 17(December):388–390Google Scholar
  24. Isakower RI, Barnas RE (1977) Torsional stresses in slotted shafts. Mach Des 49(21):100–103Google Scholar
  25. Jacobsen LS (1925) Torsional stress concentrations in shafts of circular cross section and variable diameter. Trans ASME 47:619–641Google Scholar
  26. Jawson MA, Ponter RA, (1963) An integral equation solution of the torsion problem. Proc R Soc London 275(A):237–46Google Scholar
  27. Kobayashi AS (ed) (1987) Handbook on experimental mechanics. Prentice Hall, Englewood CliffsGoogle Scholar
  28. Leven MM (1949) Stresses in key ways by photoelastic methods and comparison with numerical solution. Proc Soc Exp Stress Anal 7(2):141Google Scholar
  29. Manzella G (1939) Determinazione sperimentale delle tensioni torsionali in aste prismatiche. Tecnica Italiana, marzo 1939Google Scholar
  30. Manzella G. (1940a) Sullo scarico delle tensioni torsionali prodotte da incassi circolari negli alberi. Tecnica Italiana, marzo 1940Google Scholar
  31. Manzella G (1940b) Influenza del grado di cavità sul coefficiente di forma di alberi con tagli di chiavetta. Tecnica Italiana, aprile 1940Google Scholar
  32. Matthews GJ, Hooke CJ (1971) Solution of axisymmetric torsion problems by point matching. J Strain Anal 6(2):124–133CrossRefGoogle Scholar
  33. Nigrelli V (1994) Alberi con colletto soggetti a torsione: determinazione dei fattori di forma con il metodo degli elementi di contorno—XXIII Convegno Naz. AIAS, Cosenza, 1994Google Scholar
  34. Nigrelli V, Virzì Mariotti G (1995) Stress concentration factor in collar and shouldered shafts in torsion. Eng Anal Boundary Elem 16:71–77CrossRefGoogle Scholar
  35. Nigrelli V, Virzì Mariotti G, (1996) Fattori di concentrazione delle tensioni in alberi con colletto soggetti a trazione o a flessione—Organi di Trasmissione, Maggio 1996, pp 160–165Google Scholar
  36. Nigrelli V, Virzì Mariotti G (1997) Stress concentration factor in collar and shouldered shafts in traction or in bending. Eng Anal Boundary Elem 20:245–252CrossRefGoogle Scholar
  37. Pedersen NL (2010) Stress concentrations in keyways and optimization of keyway design. J Strain Anal Eng Des 45(8):593–604CrossRefGoogle Scholar
  38. Peterson RE (1953) Stress concentration design factors. John Wiley & Sons, New YorkGoogle Scholar
  39. Peterson RE (1974) Stress concentration factors. John Wiley & Sons, New YorkGoogle Scholar
  40. Prandtl L (1903) Zur Torsion von prismatischen Staben. Physikalishe Zeitscrift 4:758–759Google Scholar
  41. Sharpe WN (ed) (2008) Handbook of experimental solid mechanics. Springer, New YorkGoogle Scholar
  42. Shumas FJ, (1949) The effect of a slot on the stresses and rigidity of a shaft subject to pure torque. Thesis dissertation, University of British Columbia (http://hdl.handle.net/2429/41237)
  43. Thum A, Bautz W (1934) Die Ermittlung von Spannungsspitzen in Verdrehbeanspruchten Wellen durch ein elektrisches Modell. Verein Deutscher Ingenieure (VDI) 78:17Google Scholar
  44. Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn, McGraw-Hill, New YorkGoogle Scholar
  45. Virzì Mariotti G (1992) BEM applications on an external problem, comparison with both theoretical and finite element results and observations on divergence strip. Eng Anal Boundary Elem 10(3):267–271CrossRefGoogle Scholar
  46. Waner NS, Sokora WW (1953) Stress concentrations for structural angles in torsion by the conducting sheet analogy. Proc SESA XI(1):19–34Google Scholar
  47. Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, 7th edn. McGraw Hill, New York (Chapter 10)Google Scholar
  48. Zienkiewicz OC (1979) Numerical methods in stress analysis—the basis and some recent paths of development. In: Holister GS (ed) Developments in stress analysis, vol. 1, Applied Science Publishers, London (Chapter 1)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Augusto Ajovalasit
    • 1
  • Vincenzo Nigrelli
    • 1
  • Giuseppe Pitarresi
    • 1
    Email author
  • Gabriele Virzì Mariotti
    • 1
  1. 1.DICGIMUniversity of PalermoPalermoItaly

Personalised recommendations