Abstract

Allergy is a common hypersensitivity disorder of the immune system, which, along with other factors, is also subjected to regulation by microRNAs. The most common allergic diseases are allergic rhinitis, asthma, atopic dermatitis, and food allergy, which all are multifactorial and very heterogeneous conditions, highlighting the need for more individualized treatment techniques. More particular key questions in relation to allergic diseases are how microRNAs influence the differentiation, polarization, plasticity and functions of T helper and other immune cells, as well as the development of immune tolerance. In addition, microRNAs can affect allergic inflammation and tissue remodeling through their functions in epithelial and other tissue cells. Among immune system-related microRNAs, miR-21, miR-146a, and miR-155 are the most intensively studied and have convincingly been demonstrated to regulate immune responses and tissue inflammation in allergic diseases. Further characterization of microRNA functions is important, as similar to other conditions, the modulation of microRNA expression could potentially be used for therapeutic purposes in allergic diseases in the future. In addition, miRNAs could be implemented as biomarkers for endotyping complex allergic conditions.

Keywords

Noncoding RNA Allergy Asthma Rhinitis Dermatitis Food allergy 

Notes

Acknowledgment

This work was supported by EU structural assistance grant SARMP12219T and personal research grant PUT214 from Estonian Research Council.

References

  1. 1.
    Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140:771–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Renz H, Brandtzaeg P, Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol. 2012;12:9–23.Google Scholar
  3. 3.
    Akdis CA. Therapies for allergic inflammation: refining strategies to induce tolerance. Nat Med. 2012;18:736–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Locksley RM. Asthma and allergic inflammation. Cell. 2010;140:777–83.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008;8:218–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Holt PG, Sly PD. Viral infections and atopy in asthma pathogenesis: new rationales for asthma prevention and treatment. Nat Med. 2012;18:726–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Johnston SL, Pattemore PK, Sanderson G, Smith S, Lampe F, Josephs L, et al. Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. BMJ. 1995;310:1225–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Jackson DJ, Johnston SL. The role of viruses in acute exacerbations of asthma. J Allergy Clin Immunol. 2010;125:1178–87; quiz 88–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Novak N, Kruse S, Kraft S, Geiger E, Kluken H, Fimmers R, et al. Dichotomic nature of atopic dermatitis reflected by combined analysis of monocyte immunophenotyping and single nucleotide polymorphisms of the interleukin-4/interleukin-13 receptor gene: the dichotomy of extrinsic and intrinsic atopic dermatitis. J Invest Dermatol. 2002;119:870–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Hershey GK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA. The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. N Engl J Med. 1997;337:1720–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu X, Nickel R, Beyer K, Wahn U, Ehrlich E, Freidhoff LR, et al. An IL13 coding region variant is associated with a high total serum IgE level and atopic dermatitis in the German multicenter atopy study (MAS-90). J Allergy Clin Immunol. 2000;106:167–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Weidinger S, Gieger C, Rodriguez E, Baurecht H, Mempel M, Klopp N, et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet. 2008;4, e1000166.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bieber T. Atopic dermatitis. Ann Dermatol. 2010;22:125–37.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Brown SJ, Sandilands A, Zhao Y, Liao H, Relton CL, Meggitt SJ, et al. Prevalent and low-frequency null mutations in the filaggrin gene are associated with early-onset and persistent atopic eczema. J Invest Dermatol. 2008;128:1591–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Vercelli D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol. 2008;8:169–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Paternoster L, Standl M, Chen CM, Ramasamy A, Bonnelykke K, Duijts L, et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet. 2012;44:187–92.CrossRefGoogle Scholar
  18. 18.
    Akdis M, Trautmann A, Klunker S, Daigle I, Kucuksezer UC, Deglmann W, et al. T helper (Th) 2 predominance in atopic diseases is due to preferential apoptosis of circulating memory/effector Th1 cells. FASEB J. 2003;17:1026–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Rebane A, Zimmermann M, Aab A, Baurecht H, Koreck A, Karelson M, et al. Mechanisms of IFN-gamma-induced apoptosis of human skin keratinocytes in patients with atopic dermatitis. J Allergy Clin Immunol. 2012;129:1297–306.PubMedCrossRefGoogle Scholar
  20. 20.
    Hamid Q, Boguniewicz M, Leung DY. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest. 1994;94:870–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Trautmann A, Akdis M, Kleemann D, Altznauer F, Simon HU, Graeve T, et al. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest. 2000;106:25–35.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Klunker S, Trautmann A, Akdis M, Verhagen J, Schmid-Grendelmeier P, Blaser K, et al. A second step of chemotaxis after transendothelial migration: keratinocytes undergoing apoptosis release IFN-gamma-inducible protein 10, monokine induced by IFN-gamma, and IFN-gamma-inducible alpha-chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis. J Immunol. 2003;171:1078–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Basinski TM, Holzmann D, Eiwegger T, Zimmermann M, Klunker S, Meyer N, et al. Dual nature of T cell-epithelium interaction in chronic rhinosinusitis. J Allergy Clin Immunol. 2009;124:74–80.e1–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18:716–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127:355–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Rebane A, Akdis CA. MicroRNAs: essential players in the regulation of inflammation. J Allergy Clin Immunol. 2013;132:15–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol. 2013;132:3–13; quiz 4.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8:706–13.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11:141–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Etzrodt M, Cortez-Retamozo V, Newton A, Zhao J, Ng A, Wildgruber M, et al. Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep. 2012;1:317–24.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Crone SG, Jacobsen A, Federspiel B, Bardram L, Krogh A, Lund AH, et al. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-kappaB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer. 2012;11:71.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rebane A, Runnel T, Aab A, Maslovskaja J, Ruckert B, Zimmermann M, et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol. 2014;134:836–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D. NF-{kappa}B dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A. 2011;108:9184–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189–201.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010;142:914–29.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M. Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci U S A. 2013;110:11499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Xiang M, Birkbak NJ, Vafaizadeh V, Walker SR, Yeh JE, Liu S, et al. STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-kappaB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal. 2014;7:11.CrossRefGoogle Scholar
  40. 40.
    Griffiths-Jones S. miRBase: the microRNA sequence database. Methods Mol Biol. 2006;342:129–38.PubMedGoogle Scholar
  41. 41.
    Wang P, Hou J, Lin L, Wang C, Liu X, Li D, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 2010;185:6226–33.PubMedCrossRefGoogle Scholar
  42. 42.
    O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A. 2009;106:7113–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 2012;122:4190–202.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316:608–11.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 2010;33:607–19.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Boldin MP, Baltimore D. MicroRNAs, new effectors and regulators of NF-kappaB. Immunol Rev. 2012;246:205–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol. 2013;13:666–78.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    de Yebenes VG, Bartolome-Izquierdo N, Ramiro AR. Regulation of B-cell development and function by microRNAs. Immunol Rev. 2013;253:25–39.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Schmidt-Weber CB, Akdis M, Akdis CA. TH17 cells in the big picture of immunology. J Allergy Clin Immunol. 2007;120:247–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Scott JT, Turner C, Mutapi F, Woolhouse ME, Chandiwana SK, Mduluza T, et al. Dissociation of interleukin-4 and interleukin-5 production following treatment for Schistosoma haematobium infection in humans. Parasite Immunol. 2000;22:341–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Mary C, Auriault V, Faugere B, Dessein AJ. Control of Leishmania infantum infection is associated with CD8(+) and gamma interferon- and interleukin-5-producing CD4(+) antigen-specific T cells. Infect Immun. 1999;67:5559–66.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, et al. Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127:701–21.e1–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182:4994–5002.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK, Cole ET, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol. 2011;187:3362–73.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Case SR, Martin RJ, Jiang D, Minor MN, Chu HW. MicroRNA-21 inhibits toll-like receptor 2 agonist-induced lung inflammation in mice. Exp Lung Res. 2011;37:500–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Chen RF, Huang HC, Ou CY, Hsu TY, Chuang H, Chang JC, et al. MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis. Clini Exp Allergy. 2010;40:1482–90.CrossRefGoogle Scholar
  57. 57.
    Lu TX, Sherrill JD, Wen T, Plassard AJ, Besse JA, Abonia JP, et al. MicroRNA signature in patients with eosinophilic esophagitis, reversibility with glucocorticoids, and assessment as disease biomarkers. J Allergy Clin Immunol. 2012;129:1064–75.e9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lu TX, Lim EJ, Wen T, Plassard AJ, Hogan SP, Martin LJ, et al. MiR-375 is downregulated in epithelial cells after IL-13 stimulation and regulates an IL-13-induced epithelial transcriptome. Mucosal Immunol. 2012;5:388–96.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Vennegaard MT, Bonefeld CM, Hagedorn PH, Bangsgaard N, Lovendorf MB, Odum N, et al. Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis. 2012;67:298–305.PubMedCrossRefGoogle Scholar
  60. 60.
    Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A, Agrawal A, et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol. 2011.Google Scholar
  61. 61.
    Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, Shaw C, et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem. 2010;285:30139–49.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem. 2011;286:1786–94.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Okoye IS, Czieso S, Ktistaki E, Roderick K, Coomes SM, Pelly VS, et al. Transcriptomics identified a critical role for Th2 cell-intrinsic miR-155 in mediating allergy and antihelminth immunity. Proc Natl Acad Sci U S A. 2014;111:E3081–90.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Biton M, Levin A, Slyper M, Alkalay I, Horwitz E, Mor H, et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol. 2011;12:239–46.PubMedCrossRefGoogle Scholar
  65. 65.
    Bleck B, Grunig G, Chiu A, Liu M, Gordon T, Kazeros A, et al. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J Immunol. 2013;190:3757–63.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Akdis M, Palomares O, van de Veen W, van Splunter M, Akdis CA. TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J Allergy Clin Immunol. 2012;129:1438–49; quiz50–1.PubMedCrossRefGoogle Scholar
  67. 67.
    Akdis M, Verhagen J, Taylor A, Karamloo F, Karagiannidis C, Crameri R, et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med. 2004;199:1567–75.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciume G, Muljo SA, et al. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol. 2012;13:587–95.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Warth SC, Hoefig KP, Hiekel A, Schallenberg S, Jovanovic K, Klein L, et al. Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation. EMBO J. 2015.Google Scholar
  70. 70.
    Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16:45–56.PubMedCrossRefGoogle Scholar
  71. 71.
    Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A, Fallon PG. Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J Allergy Clin Immunol. 2010;125:1114–24.e8.PubMedCrossRefGoogle Scholar
  72. 72.
    Bousquet J, Anto JM, Demoly P, Schunemann HJ, Togias A, Akdis M, et al. Severe chronic allergic (and related) diseases: a uniform approach—a MeDALL—GA2LEN—ARIA position paper. Int Arch Allergy Immunol. 2012;158:216–31.PubMedCrossRefGoogle Scholar
  73. 73.
    Hrusch CL, Tjota MY, Sperling AI. The role of dendritic cells and monocytes in the maintenance and loss of respiratory tolerance. Curr Allergy Asthma Rep. 2015;15:494.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zheng J, Jiang HY, Li J, Tang HC, Zhang XM, Wang XR, et al. MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-kappaB signalling pathways. Allergy. 2012;67:362–70.PubMedCrossRefGoogle Scholar
  75. 75.
    Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 2010;184:4955–65.PubMedCrossRefGoogle Scholar
  76. 76.
    Feng MJ, Shi F, Qiu C, Peng WK. MicroRNA-181a, -146a and -146b in spleen CD4+ T lymphocytes play proinflammatory roles in a murine model of asthma. Int Immunopharmacol. 2012;13:347–53.PubMedCrossRefGoogle Scholar
  77. 77.
    Malmhall C, Alawieh S, Lu Y, Sjostrand M, Bossios A, Eldh M, et al. MicroRNA-155 is essential for T2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol. 2013.Google Scholar
  78. 78.
    Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A. 2009;106:18704–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Collison A, Herbert C, Siegle JS, Mattes J, Foster PS, Kumar RK. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm Med. 2011;11:29.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128:160–7.e4.PubMedCrossRefGoogle Scholar
  81. 81.
    Sharma A, Kumar M, Ahmad T, Mabalirajan U, Aich J, Agrawal A, et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J Appl Physiol. 2012;113:459–64.PubMedCrossRefGoogle Scholar
  82. 82.
    Qin HB, Xu B, Mei JJ, Li D, Liu JJ, Zhao DY, et al. Inhibition of miRNA-221 suppresses the airway inflammation in asthma. Inflammation. 2012;35:1595–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Montagner S, Orlandi EM, Merante S, Monticelli S. The role of miRNAs in mast cells and other innate immune cells. Immunol Rev. 2013;253:12–24.PubMedCrossRefGoogle Scholar
  84. 84.
    Mayoral RJ, Pipkin ME, Pachkov M, van Nimwegen E, Rao A, Monticelli S. MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol. 2009;182:433–45.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Agache I, Akdis C, Jutel M, Virchow JC. Untangling asthma phenotypes and endotypes. Allergy. 2012;67:835–46.PubMedCrossRefGoogle Scholar
  86. 86.
    Williams AE, Larner-Svensson H, Perry MM, Campbell GA, Herrick SE, Adcock IM, et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS One. 2009;4, e5889.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Jardim MJ, Dailey L, Silbajoris R, Diaz-Sanchez D. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol. 2012;47:536–42.PubMedCrossRefGoogle Scholar
  88. 88.
    Takyar S, Vasavada H, Zhang JG, Ahangari F, Niu N, Liu Q, et al. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. J Exp Med. 2013;210:1993–2010.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chiba Y, Misawa M. MicroRNAs and their therapeutic potential for human diseases: MiR-133a and bronchial smooth muscle hyperresponsiveness in asthma. J Pharmacol Sci. 2010;114:264–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Jude JA, Dileepan M, Subramanian S, Solway J, Panettieri Jr RA, Walseth TF, et al. miR-140-3p regulation of TNF-alpha-induced CD38 expression in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2012;303:L460–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chen T, Zhou G, Zhou Q, Tang H, Ibe JC, Cheng H, et al. Loss of miR-17~92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDLIM5. Am J Respir Crit Care Med. 2015;191(6):678–92.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Dileepan M, Jude JA, Rao SP, Walseth TF, Panettieri RA, Subramanian S, et al. MicroRNA-708 regulates CD38 expression through signaling pathways JNK MAP kinase and PTEN/AKT in human airway smooth muscle cells. Respir Res. 2014;15:107.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, Gerthoffer WT. MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2014;307:L727–34.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Liu X, Nelson A, Wang X, Kanaji N, Kim M, Sato T, et al. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochem Biophys Res Commun. 2009;380:177–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, Gerthoffer WT. Cyclooxygenase-2 and microRNA-155 expression are elevated in asthmatic airway smooth muscle cells. Am J Respir Cell Mol Biol. 2014;52(4):438–47.CrossRefGoogle Scholar
  96. 96.
    Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. BMJ. 1993;307:982–6.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bondanese VP, Francisco-Garcia A, Bedke N, Davies DE, Sanchez-Elsner T. Identification of host miRNAs that may limit human rhinovirus replication. World J Biol Chem. 2014;5:437–56.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Martinez-Nunez RT, Bondanese VP, Louafi F, Francisco-Garcia AS, Rupani H, Bedke N, et al. A microRNA network dysregulated in asthma controls IL-6 production in bronchial epithelial cells. PLoS One. 2014;9, e111659.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol. 2008;180:5689–98.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Edwards MR, Regamey N, Vareille M, Kieninger E, Gupta A, Shoemark A, et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol. 2013;6:797–806.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bartlett NW, Slater L, Glanville N, Haas JJ, Caramori G, Casolari P, et al. Defining critical roles for NF-kappaB p65 and type I interferon in innate immunity to rhinovirus. EMBO Mol Med. 2012;4:1244–60.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sonkoly E, Janson P, Majuri ML, Savinko T, Fyhrquist N, Eidsmo L, et al. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol. 2010;126:581–9.e1–20.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang XH, Zhang YN, Li HB, Hu CY, Wang N, Cao PP, et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med. 2012;185:140–51.PubMedCrossRefGoogle Scholar
  104. 104.
    Luo Y, Deng Y, Tao Z, Chen S, Xiao B, Ren J, et al. Regulatory effect of microRNA-135a on the Th1/Th2 imbalance in a murine model of allergic rhinitis. Exp Ther Med. 2014;8:1105–10.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Teng Y, Zhang R, Liu C, Zhou L, Wang H, Zhuang W, et al. miR-143 inhibits interleukin-13-induced inflammatory cytokine and mucus production in nasal epithelial cells from allergic rhinitis patients by targeting IL13Ralpha1. Biochem Biophys Res Commun. 2015;457:58–64.PubMedCrossRefGoogle Scholar
  106. 106.
    Redis RS, Calin S, Yang Y, You MJ, Calin GA. Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol Ther. 2012;136:169–74.PubMedCrossRefGoogle Scholar
  107. 107.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–33.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108:5003–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–33.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bryniarski K, Ptak W, Jayakumar A, Pullmann K, Caplan MJ, Chairoungdua A, et al. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol. 2013;132:170–81.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Akbas F, Coskunpinar E, Aynaci E, Oltulu YM, Yildiz P. Analysis of serum micro-RNAs as potential biomarker in chronic obstructive pulmonary disease. Exp Lung Res. 2012;38:286–94.PubMedCrossRefGoogle Scholar
  112. 112.
    Levanen B, Bhakta NR, Torregrosa Paredes P, Barbeau R, Hiltbrunner S, Pollack JL, et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 2013;131:894–903.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sinha A, Yadav AK, Chakraborty S, Kabra SK, Lodha R, Kumar M, et al. Exosome-enclosed microRNAs in exhaled breath hold potential for biomarker discovery in patients with pulmonary diseases. J Allergy Clin Immunol. 2013;132:219–22.PubMedCrossRefGoogle Scholar
  114. 114.
    Lv Y, Qi R, Xu J, Di Z, Zheng H, Huo W, et al. Profiling of serum and urinary microRNAs in children with atopic dermatitis. PLoS One. 2014;9, e115448.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Akdis M, Akdis CA. Therapeutic manipulation of immune tolerance in allergic disease. Nat Rev Drug Discov. 2009;8:645–60.PubMedCrossRefGoogle Scholar
  116. 116.
    Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther. 2012;20:513–24.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Robinson DS. The role of the T cell in asthma. J Allergy Clin Immunol. 2010;126:1081–91; quiz 92–3.PubMedCrossRefGoogle Scholar
  118. 118.
    Holtzman MJ. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J Clin Invest. 2012;122:2741–8.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Tsitsiou E, Williams AE, Moschos SA, Patel K, Rossios C, Jiang X, et al. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J Allergy Clin Immunol. 2012;129:95–103.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Biomedicine and Translational Medicine, University of TartuTartuEstonia

Personalised recommendations