microRNA and Pulmonary Hypertension

  • Olivier Boucherat
  • François Potus
  • Sébastien Bonnet
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 888)


Pulmonary arterial hypertension (PAH) is a lethal vasculopathy associated with complex etiology that involves remodeling of distal pulmonary arteries leading to elevation of pulmonary vascular resistance. This process results in right ventricular (RV) hypertrophy and ultimately RV failure. In addition, PAH is associated with systemic impairment in the skeletal muscle contributing to exercise intolerance. It has only been a few decades since microRNAs (miRNAs) have been implied in the development and progression of PAH regarding every organ affected by the disease. Indeed, impairment of miRNA’s expression has been involved in vascular cell remodeling processes such as adventitial fibroblast (AdvFB) migration; pulmonary arterial smooth muscle cell (PASMC) proliferation and pulmonary arterial endothelial cell (PAEC) dysfunction observed in PAH. At the molecular level miRNAs have been described in the control of ion channels and mitochondrial function as well as the regulation of the BMPR2 signaling pathways contributing to PAH lung impairment. Recently miRNAs have also been specifically implicated in RV dysfunction and systemic angiogenic impairment, observed in PAH. In this chapter, we will summarize the knowledge on miRNA in PAH and highlight their crucial role in the etiology of this disease.


PAH microRNA Lung Right ventricle PASMC PAEC 


  1. 1.
    Badesch DB, Champion HC, Sanchez MAG, Hoeper MM, Loyd JE, Manes A, et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S55–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S43–54.CrossRefPubMedGoogle Scholar
  3. 3.
    Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(25 Suppl):D22–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Fowler RM, Gain KR, Gabbay E. Exercise intolerance in pulmonary arterial hypertension. Pulm Med. 2012;2012:359204.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hoeper MM, Barberà JA, Channick RN, Hassoun PM, Lang IM, Manes A, et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S85–96.CrossRefPubMedGoogle Scholar
  6. 6.
    Tuder RM, Archer SL, Dorfmüller P, Erzurum SC, Guignabert C, Michelakis E, et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D4–12.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cottrill KA, Chan SY. Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect. Eur J Clin Invest. 2013;43(8):855–65.CrossRefPubMedGoogle Scholar
  8. 8.
    Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thébaud B, Bonnet S, et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation. 2006;113(22):2630–41.CrossRefPubMedGoogle Scholar
  9. 9.
    McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, et al. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest. 2005;115(6):1479–91.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11(1):37–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Kuhr FK, Smith KA, Song MY, Levitan I, Yuan JX-J. New mechanisms of pulmonary arterial hypertension: role of Ca2+ signaling. Am J Physiol Heart Circ Physiol. 2012;302(8):H1546–62.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Meloche J, Paulin R, Provencher S, Bonnet S. Therapeutic potential of microRNA modulation in pulmonary arterial hypertension. Curr Vasc Pharmacol. 2015;13(3):331–40.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou G, Chen T, Raj JU. MicroRNAs in pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2015;52(2):139–51.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Caruso P, MacLean MR, Khanin R, McClure J, Soon E, Southgate M, et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol. 2010;30(4):716–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000;67(3):737–44.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA, Loyd JE, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet. 2000;26(1):81–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet. 2009;46(5):331–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Izikki M, Guignabert C, Fadel E, Humbert M, Tu L, Zadigue P, et al. Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. J Clin Invest. 2009;119(3):512–23.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Teichert-Kuliszewska K, Kutryk MJB, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res. 2006;98(2):209–17.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang X, Long L, Reynolds PN, Morrell NW. Expression of mutant BMPR-II in pulmonary endothelial cells promotes apoptosis and a release of factors that stimulate proliferation of pulmonary arterial smooth muscle cells. Pulm Circ. 2011;1(1):103–10.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Alastalo T-P, Li M, Perez Vde J, Pham D, Sawada H, Wang JK, et al. Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Invest. 2011;121(9):3735–46.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, et al. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med. 2013;19(1):74–82.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bertero T, Lu Y, Annis S, Hale A, Bhat B, Saggar R, et al. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest. 2014;124(8):3514–28.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ameshima S, Golpon H, Cool CD, Chan D, Vandivier RW, Gardai SJ, et al. Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth. Circ Res. 2003;92(10):1162–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Takahashi H, Goto N, Kojima Y, Tsuda Y, Morio Y, Muramatsu M, et al. Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2006;290(3):L450–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Brock M, Trenkmann M, Gay RE, Michel BA, Gay S, Fischler M, et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res. 2009;104(10):1184–91.CrossRefPubMedGoogle Scholar
  27. 27.
    Kherbeck N, Tamby MC, Bussone G, Dib H, Perros F, Humbert M, et al. The role of inflammation and autoimmunity in the pathophysiology of pulmonary arterial hypertension. Clin Rev Allergy Immunol. 2013;44(1):31–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Huber LC, Ulrich S, Leuenberger C, Gassmann M, Vogel J, von Blotzheim LG, et al. MicroRNA-125a in pulmonary hypertension: regulator of a proliferative phenotype of endothelial cells. Exp Biol Med (Maywood). 2015;pii, 1535370215579018.Google Scholar
  29. 29.
    Svensson D, Gidlöf O, Turczyńska KM, Erlinge D, Albinsson S, Nilsson B-O. Inhibition of microRNA-125a promotes human endothelial cell proliferation and viability through an antiapoptotic mechanism. J Vasc Res. 2014;51(3):239–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, et al. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation. 2012;125(12):1520–32.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Drake KM, Zygmunt D, Mavrakis L, Harbor P, Wang L, Comhair SA, et al. Altered microRNA processing in heritable pulmonary arterial hypertension: an important role for Smad-8. Am J Respir Crit Care Med. 2011;184(12):1400–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang S, Banerjee S, de Freitas A, Cui H, Xie N, Abraham E, et al. miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L521–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    White K, Dempsie Y, Caruso P, Wallace E, McDonald RA, Stevens H, et al. Endothelial apoptosis in pulmonary hypertension is controlled by a microRNA/programmed cell death 4/caspase-3 axis. Hypertension. 2014;64(1):185–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Chan SY, Zhang Y-Y, Hemann C, Mahoney CE, Zweier JL, Loscalzo J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009;10(4):273–84.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A. 2007;104(4):1342–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ryan JJ, Archer SL. Emerging concepts in the molecular basis of pulmonary arterial hypertension: part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation. 2015;131(19):1691–702.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cotroneo E, Ashek A, Wang L, Wharton J, Dubois O, Bozorgi S, et al. Iron homeostasis and pulmonary hypertension: iron deficiency leads to pulmonary vascular remodeling in the rat. Circ Res. 2015;116(10):1680–90.CrossRefPubMedGoogle Scholar
  38. 38.
    White K, Lu Y, Annis S, Hale AE, Chau BN, Dahlman JE, et al. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol Med. 2015;7(6):695–713.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Paulin R, Meloche J, Bonnet S. STAT3 signaling in pulmonary arterial hypertension. JAKSTAT. 2012;1(4):223–33.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Paulin R, Courboulin A, Meloche J, Mainguy V, Dumas de la Roque E, Saksouk N, et al. Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation. 2011;123(11):1205–15.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T, Meloche J, et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. 2011;208(3):535–48.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Courboulin A, Tremblay VL, Barrier M, Meloche J, Jacob MH, Chapolard M, et al. Krüppel-like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res. 2011;12:128.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A. 2007;104(27):11418–23.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Meloche J, Pflieger A, Vaillancourt M, Paulin R, Potus F, Zervopoulos S, et al. Role for DNA damage signaling in pulmonary arterial hypertension. Circulation. 2014;129(7):786–97.CrossRefPubMedGoogle Scholar
  45. 45.
    Meloche J, Le Guen M, Potus F, et al. miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 2015;309:C363–72. doi:  10.1152/ajpcell.00149.2015.
  46. 46.
    Xing Y, Zheng X, Li G, Liao L, Cao W, Xing H, et al. MicroRNA-30c contributes to the development of hypoxia pulmonary hypertension by inhibiting platelet-derived growth factor receptor β expression. Int J Biochem Cell Biol. 2015;64:155–66.CrossRefPubMedGoogle Scholar
  47. 47.
    Jalali S, Ramanathan GK, Parthasarathy PT, Aljubran S, Galam L, Yunus A, et al. Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One. 2012;7(10):e46808.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115(10):2811–21.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Perros F, Montani D, Dorfmüller P, Durand-Gasselin I, Tcherakian C, Le Pavec J, et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;178(1):81–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Li X, Zhang X, Leathers R, Makino A, Huang C, Parsa P, et al. Notch3 signaling promotes the development of pulmonary arterial hypertension. Nat Med. 2009;15(11):1289–97.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, et al. A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res. 2012;111(3):290–300.CrossRefPubMedGoogle Scholar
  52. 52.
    Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol. 2010;299(6):L861–71.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med. 2012;185(4):409–19.CrossRefPubMedGoogle Scholar
  54. 54.
    Brock M, Samillan VJ, Trenkmann M, Schwarzwald C, Ulrich S, Gay RE, et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodeling in hypoxia-induced pulmonary hypertension. Eur Heart J. 2014;35(45):3203–11.CrossRefPubMedGoogle Scholar
  55. 55.
    Chen T, Zhou G, Zhou Q, Tang H, Ibe JCF, Cheng H, et al. Loss of microRNA-17 ∼ 92 in smooth muscle cells attenuates experimental pulmonary hypertension via induction of PDZ and LIM domain 5. Am J Respir Crit Care Med. 2015;191(6):678–92.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mandegar M, Yuan JXJ. Role of K+ channels in pulmonary hypertension. Vascul Pharmacol. 2002;38(1):25–33.CrossRefPubMedGoogle Scholar
  57. 57.
    Li S-S, Ran Y-J, Zhang D-D, Li S-Z, Zhu D. MicroRNA-190 regulates hypoxic pulmonary vasoconstriction by targeting a voltage-gated K+ channel in arterial smooth muscle cells. J Cell Biochem. 2014;115(6):1196–205.CrossRefPubMedGoogle Scholar
  58. 58.
    Pohl NM, Yamamura A, Yamamura H, Makino A, Yuan JX-J. MicroRNA 29b is upregulated in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension and inhibits K+ channel expression and function. FASEB J. 2012;26:884.Google Scholar
  59. 59.
    Guo L, Qiu Z, Wei L, Yu X, Gao X, Jiang S, et al. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-α1C. Hypertension. 2012;59(5):1006–13.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang L, Ma J, Li Y, Guo L, Ran Y, Liu S, et al. 15-Hydroxyeicosatetraenoic acid (15-HETE) protects pulmonary artery smooth muscle cells against apoptosis via HSP90. Life Sci. 2010;87(7–8):223–31.CrossRefPubMedGoogle Scholar
  61. 61.
    Ma C, Li Y, Ma J, Liu Y, Li Q, Niu S, et al. Key role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in pulmonary vascular remodeling and vascular angiogenesis associated with hypoxic pulmonary hypertension. Hypertension. 2011;58(4):679–88.CrossRefPubMedGoogle Scholar
  62. 62.
    Sherman CB, Peterson SJ, Frishman WH. Apolipoprotein A-I mimetic peptides: a potential new therapy for the prevention of atherosclerosis. Cardiol Rev. 2010;18(3):141–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Sharma S, Umar S, Potus F, Iorga A, Wong G, Meriwether D, et al. ApoA-I mimetic peptide 4F rescues pulmonary hypertension by inducing microRNA-193-3p. Circulation. 2014;130(9):776–85.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stenmark KR, Frid MG, Yeager M, Li M, Riddle S, McKinsey T, et al. Targeting the adventitial microenvironment in pulmonary hypertension: a potential approach to therapy that considers epigenetic change. Pulm Circ. 2012;2(1):3–14.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, et al. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res. 2014;114(1):67–78.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135(3):794–804.CrossRefPubMedGoogle Scholar
  67. 67.
    Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31.CrossRefPubMedGoogle Scholar
  68. 68.
    Thum T, Batkai S. MicroRNAs in right ventricular (dys)function (2013 Grover conference series). Pulm Circ. 2014;4(2):185–90.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Paulin R, Sutendra G, Gurtu V, Dromparis P, Haromy AS, Provencher S, et al. A miR-208-Mef2 axis drives the de-compensation of right ventricular function in pulmonary hypertension. Circ Res. 2015;116(1):56–69.CrossRefPubMedGoogle Scholar
  70. 70.
    Potus F, Graydon C, Provencher S, Bonnet S. Vascular remodeling process in pulmonary arterial hypertension, with focus on miR-204 and miR-126 (2013 Grover conference series). Pulm Circ. 2014;4(2):175–84.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Potus F, Malenfant S, Graydon C, Mainguy V, Tremblay E, Breuils-Bonnet S, et al. Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2014;190(3):318–28.PubMedGoogle Scholar
  72. 72.
    Potus F, Ruffenach G, Dahou A, et al. Downregulation of miR-126 contributes to the Failing right ventricle in pulmonary arterial hypertension. circulation 2015;132:932–43. doi: 10.1161/CIRCULATIONAHA.115.016382.
  73. 73.
    Wei C, Henderson H, Spradley C, Li L, Kim I-K, Kumar S, et al. Circulating miRNAs as potential marker for pulmonary hypertension. PLoS One. 2013;8(5), e64396.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Olivier Boucherat
    • 1
  • François Potus
    • 2
  • Sébastien Bonnet
    • 2
  1. 1.Pulmonary Hypertension Research Group of the University Institute of Cardiology and Pneumology, Québec Research Center, Laval UniversityQuebec CityCanada
  2. 2.Pulmonary Hypertension Research Group of the Quebec Heart and Lung Institute, Québec Research Center, Laval UniversityQuebec CityCanada

Personalised recommendations