Advertisement

microRNAs in Essential Hypertension and Blood Pressure Regulation

  • Francine Z. Marques
  • Fadi J. CharcharEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 888)

Abstract

Unravelling the complete genetic predisposition to high blood pressure (BP) has proven to be challenging. This puzzle and the fact that coding regions of the genome account for less than 2 % of the entire human DNA support the hypothesis that mechanisms besides coding genes are likely to contribute to BP regulation. Non-coding RNAs, especially microRNAs, are emerging as key players of transcription regulation in both health and disease states. They control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct involvement with BP regulation is highly probable. Here we review the literature about microRNAs associated with regulation of BP and hypertension, highlighting investigations, methodology and difficulties arising in the field. These molecules are being studied for exploitation in diagnostics, prognostics and therapeutics in many diseases. There have been some studies that examined biological fluid microRNAs as biomarkers for hypertension, but most remain inconclusive due to the small sample sizes and differences in methodological standardisation. Fewer studies have analysed tissue microRNA levels in vascular smooth muscle cells and the kidney. Others focused on the interaction between single nucleotide polymorphisms and microRNA binding sites. Studies in animals have shown that angiotensin II, high-salt diet and exercise change microRNA levels in hypertension. Treatment of spontaneously hypertensive rats with a miR-22 inhibitor and treatment of hypertensive Schlager BPH/2J mice with a miR-181a mimic decreased their BP. This supports the use of microRNAs as therapeutic targets in hypertension, and future studies should test the use of other microRNAs found in human association studies. In conclusion, there is a clear need of increased pace of human, animal and functional studies to help us understand the multifaceted roles of microRNAs as critical regulators of the development and physiology of BP.

Keywords

Blood pressure Arterial pressure Essential hypertension Circulating microRNAs Biomarkers Kidney Endothelial cells Plasma 

Notes

Acknowledgements

We would like to thank Mr. Ian Goodbody for proofreading this chapter. F.Z.M. and F.J.C. are supported by grants from the National Health & Medical Research Council of Australia (NHMRC), the National Heart Foundation and the Federation University Australia ‘Self-sustaining Regions Research and Innovation Initiative’, an Australian Government Collaborative Research Network (CRN). F.Z.M. is supported by NHMRC (APP1052659) and National Heart Foundation (PF12M6785) co-shared Early Career Fellowships.

References

  1. 1.
    Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circ Res. 2013;112(10):1365–79.CrossRefPubMedGoogle Scholar
  2. 2.
    Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2001;2(11):986–91.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Frith MC, Pheasant M, Mattick JS. The amazing complexity of the human transcriptome. Eur J Hum Genet. 2005;13(8):894–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Margulies EH, et al. Comparative analyses of multi-species sequences from targeted genomic regions. Nature. 2003;424(6950):788–93.CrossRefPubMedGoogle Scholar
  6. 6.
    Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.PubMedGoogle Scholar
  8. 8.
    Da Sacco L, Masotti A. Recent insights and novel bioinformatics tools to understand the role of microRNAs binding to 5’ untranslated region. Int J Mol Sci. 2012;14(1):480–95.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A. 2015;112(10):E1106–15.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Marques FZ, Booth SA, Charchar FJ. The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. J Hum Hypertens. 2015;29(8):459–67.CrossRefPubMedGoogle Scholar
  12. 12.
    Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res. 2012;93(4):555–62.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tijsen AJ, Pinto YM, Creemers EE. Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2012;303(9):H1085–95.CrossRefPubMedGoogle Scholar
  14. 14.
    Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends Genet. 2013;29(10):569–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 2011;124(2):175–84.CrossRefPubMedGoogle Scholar
  16. 16.
    Marques FZ, Morris BJ. Letter by Marques and Morris regarding article, “Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection”. Circulation. 2012;125(5):e337. author reply e8-9.CrossRefPubMedGoogle Scholar
  17. 17.
    Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT, et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab. 2012;97(12):E2271–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Schiffrin EL. Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond). 2014;126(4):267–74.CrossRefGoogle Scholar
  19. 19.
    Penzkofer D, Bonauer A, Fischer A, Tups A, Brandes RP, Zeiher AM, et al. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development. PLoS One. 2014;9(6), e101153.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gu Q, Wang B, Zhang XF, Ma YP, Liu JD, Wang XZ. Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc Pathol. 2014;23(5):298–305.CrossRefPubMedGoogle Scholar
  21. 21.
    Gildea JJ, Carlson JM, Schoeffel CD, Carey RM, Felder RA. Urinary exosome miRNome analysis and its applications to salt sensitivity of blood pressure. Clin Biochem. 2013;46(12):1131–4.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens. 2014;28(8):510–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens. 2014;8(6):368–75.CrossRefPubMedGoogle Scholar
  24. 24.
    Mandraffino G, Imbalzano E, Sardo MA, D’Ascola A, Mamone F, Lo Gullo A, et al. Circulating progenitor cells in hypertensive patients with different degrees of cardiovascular involvement. J Hum Hypertens. 2014;28(9):543–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang Q, Jia C, Wang P, Xiong M, Cui J, Li L, et al. MicroRNA-505 identified from patients with essential hypertension impairs endothelial cell migration and tube formation. Int J Cardiol. 2014;177(3):925–34.CrossRefPubMedGoogle Scholar
  26. 26.
    Cengiz M, Karatas OF, Koparir E, Yavuzer S, Ali C, Yavuzer H, et al. Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine (Baltimore). 2015;94(13), e693.CrossRefGoogle Scholar
  27. 27.
    Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci U S A. 2013;110(11):4255–60.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10(10):1003–5.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Marques FZ, Campain AE, Tomaszewski M, Yang YHJ, Zukowska-Sczechowska E, Charchar FJ, et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58:1093–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Tomaszewski M, Charchar FJ, Lynch MD, Padmanabhan S, Wang WY, Miller WH, et al. Fibroblast growth factor 1 gene and hypertension: from the quantitative trait locus to positional analysis. Circulation. 2007;116(17):1915–24.CrossRefPubMedGoogle Scholar
  31. 31.
    Tomaszewski M, Charchar FJ, Nelson CP, Barnes T, Denniff M, Kaiser M, et al. Pathway analysis shows association between FGFBP1 and hypertension. J Am Soc Nephrol. 2011;22(5):947–55.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Eskildsen TV, Jeppesen PL, Schneider M, Nossent AY, Sandberg MB, Hansen PB, et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci. 2013;14(6):11190–207.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Santovito D, Mandolini C, Marcantonio P, De Nardis V, Bucci M, Paganelli C, et al. Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert Opin Ther Targets. 2013;17(3):217–23.CrossRefPubMedGoogle Scholar
  34. 34.
    Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3’ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81(2):405–13.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P, et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens. 2011;24(2):241–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Elton TS, Sansom SE, Martin MM. Cardiovascular disease, single nucleotide polymorphisms, and the renin angiotensin system: is there a microRNA connection? Int J Hypertens. 2010;2010(2010):281692.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Nossent AY, Hansen JL, Doggen C, Quax PH, Sheikh SP, Rosendaal FR. SNPs in microRNA binding sites in 3’-UTRs of RAAS genes influence arterial blood pressure and risk of myocardial infarction. Am J Hypertens. 2011;24(9):999–1006.CrossRefPubMedGoogle Scholar
  38. 38.
    Maharjan S, Mopidevi B, Kaw MK, Puri N, Kumar A. Human aldosterone synthase gene polymorphism promotes miRNA binding and regulates gene expression. Physiol Genomics. 2014;46(24):860–5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mopidevi B, Ponnala M, Kumar A. Human angiotensinogen +11525 C/A polymorphism modulates its gene expression through microRNA binding. Physiol Genomics. 2013;45(19):901–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yang Z, Venardos K, Jones E, Morris BJ, Chin-Dusting J, Kaye DM. Identification of a novel polymorphism in the 3’UTR of the L-arginine transporter gene SLC7A1: contribution to hypertension and endothelial dysfunction. Circulation. 2007;115(10):1269–74.PubMedGoogle Scholar
  41. 41.
    Yang Z, Kaye DM. Mechanistic insights into the link between a polymorphism of the 3’UTR of the SLC7A1 gene and hypertension. Hum Mutat. 2009;30(3):328–33.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang L, Rao F, Zhang K, Mahata M, Rodriguez-Flores JL, Fung MM, et al. Neuropeptide Y(1) Receptor NPY1R discovery of naturally occurring human genetic variants governing gene expression in cella as well as pleiotropic effects on autonomic activity and blood pressure in vivo. J Am Coll Cardiol. 2009;54(10):944–54.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    O’Connor DT, Zhu G, Rao F, Taupenot L, Fung MM, Das M, et al. Heritability and genome-wide linkage in US and Australian twins identify novel genomic regions controlling chromogranin a: implications for secretion and blood pressure. Circulation. 2008;118(3):247–57.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wei Z, Biswas N, Wang L, Courel M, Zhang K, Soler-Jover A, et al. A common genetic variant in the 3’-UTR of vacuolar H + -ATPase ATP6V0A1 creates a microRNA motif to alter chromogranin A processing and hypertension risk. Circ Cardiovasc Genet. 2011;4(4):381–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A, et al. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest. 2013;123(8):3378–82.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hanin G, Shenhar-Tsarfaty S, Yayon N, Hoe YY, Bennett ER, Sklan EH, et al. Competing targets of microRNA-608 affect anxiety and hypertension. Hum Mol Genet. 2014;23(17):4569–80.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ghanbari M, Franco OH, de Looper H, Hofman A, Erkeland S, Dehghan A. Genetic variations in miRNA binding sites affect miRNA-mediated regulation of several genes associated with cardiometabolic phenotypes. Circ Cardiovasc Genet. 2015;8(3):473–86.CrossRefPubMedGoogle Scholar
  48. 48.
    Fu X, Guo L, Jiang ZM, Zhao LS, Xu AG. An miR-143 promoter variant associated with essential hypertension. Int J Clin Exp Med. 2014;7(7):1813–7.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Ghanbari M, de Vries PS, de Looper H, Peters MJ, Schurmann C, Yaghootkar H, et al. A genetic variant in the seed region of miR-4513 shows pleiotropic effects on lipid and glucose homeostasis, blood pressure, and coronary artery disease. Hum Mutat. 2014;35(12):1524–31.CrossRefPubMedGoogle Scholar
  50. 50.
    Han F, Konkalmatt P, Chen J, Gildea J, Felder RA, Jose PA, et al. miR-217 Mediates the protective effects of the dopamine d2 receptor on fibrosis in human renal proximal tubule cells. Hypertension. 2015;65(5):1118–25.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ostchega Y, Dillon CF, Hughes JP, Carroll M, Yoon S. Trends in hypertension prevalence, awareness, treatment, and control in older U.S. adults: data from the National Health and Nutrition Examination Survey 1988 to 2004. J Am Geriatr Soc. 2007;55(7):1056–65.CrossRefPubMedGoogle Scholar
  52. 52.
    Wang H, He T, Wu C, Zhong PS, Cui Y. A powerful statistical method identifies novel loci associated with diastolic blood pressure triggered by nonlinear gene-environment interaction. BMC Proc. 2014;8 Suppl 1:S61.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fernandes T, Magalhaes FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension. 2012;59(2):513–20.CrossRefPubMedGoogle Scholar
  54. 54.
    Sequeira-Lopez ML, Weatherford ET, Borges GR, Monteagudo MC, Pentz ES, Harfe BD, et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol. 2010;21(3):460–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23(18):2166–78.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Albinsson S, Skoura A, Yu J, DiLorenzo A, Fernandez-Hernando C, Offermanns S, et al. Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS One. 2011;6(4), e18869.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Davern PJ, Nguyen-Huu TP, La Greca L, Abdelkader A, Head GA. Role of the sympathetic nervous system in Schlager genetically hypertensive mice. Hypertension. 2009;54(4):852–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Jackson KL, Marques FZ, Watson AM, Palma-Rigo K, Nguyen-Huu TP, Morris BJ, et al. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension. 2013;62(4):775–81.CrossRefPubMedGoogle Scholar
  59. 59.
    Jackson KL, Marques FZ, Nguyen-Huu TP, Stevenson ER, Charchar FJ, Davern PJ, et al. MicroRNA-181a mimic inhibits the renin-angiotensin system and attenuates hypertension in a neurogenic model of hypertension. High Blood Pressure Research Scientific Sessions 2014, San Francisco. 9–12 September 2014.Google Scholar
  60. 60.
    Fan ZD, Zhang L, Shi Z, Gan XB, Gao XY, Zhu GQ. Artificial microRNA interference targeting AT(1a) receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther. 2012;19(8):810–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Nossent AY, Eskildsen TV, Andersen LB, Bie P, Bronnum H, Schneider M, et al. The 14q32 microRNA-487b targets the antiapoptotic insulin receptor substrate 1 in hypertension-induced remodeling of the aorta. Ann Surg. 2013;258(5):743–51. discussion 52–3.CrossRefPubMedGoogle Scholar
  62. 62.
    Cowley Jr AW, Roman RJ, Kaldunski ML, Dumas P, Dickhout JG, Greene AS, et al. Brown Norway chromosome 13 confers protection from high salt to consomic Dahl S rat. Hypertension. 2001;37(2 Part 2):456–61.CrossRefPubMedGoogle Scholar
  63. 63.
    Liu Y, Taylor NE, Lu L, Usa K, Cowley Jr AW, Ferreri NR, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 2010;55(4):974–82.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Castoldi G, Di Gioia CR, Bombardi C, Catalucci D, Corradi B, Gualazzi MG, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 2012;227(2):850–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Ling S, Nanhwan M, Qian J, Kodakandla M, Castillo AC, Thomas B, et al. Modulation of microRNAs in hypertension-induced arterial remodeling through the β1 and β3-adrenoreceptor pathways. J Mol Cell Cardiol. 2013;65:127–36.CrossRefPubMedGoogle Scholar
  66. 66.
    Friese RS, Altshuler AE, Zhang K, Miramontes-Gonzalez JP, Hightower CM, Jirout ML, et al. MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension. Hum Mol Genet. 2013;22(18):3624–40.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Sahu BS, Sonawane PJ, Mahapatra NR. Chromogranin A: a novel susceptibility gene for essential hypertension. Cell Mol Life Sci. 2010;67(6):861–74.CrossRefPubMedGoogle Scholar
  68. 68.
    Wahlquist C, Jeong D, Rojas-Munoz A, Kho C, Lee A, Mitsuyama S, et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508(7497):531–5.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental animals to humans. Biochim Biophys Acta. 2010;1802(12):1299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fagard R, Brguljan J, Staessen J, Thijs L, Derom C, Thomis M, et al. Heritability of conventional and ambulatory blood pressures. A study in twins. Hypertension. 1995;26(6 Pt 1):919–24.CrossRefPubMedGoogle Scholar
  71. 71.
    Snieder H, Harshfield GA, Treiber FA. Heritability of blood pressure and hemodynamics in African- and European-American youth. Hypertension. 2003;41(6):1196–201.CrossRefPubMedGoogle Scholar
  72. 72.
    Zeegers MP, Rijsdijk F, Sham P, Fagard R, Gielen M, De Leeuw PW, et al. The contribution of risk factors to blood pressure heritability estimates in young adults: the east flanders prospective twin study. Twin Res. 2004;7(3):245–53.CrossRefPubMedGoogle Scholar
  73. 73.
    Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension. 2005;45(1):80–5.CrossRefPubMedGoogle Scholar
  74. 74.
    Wang X, Ding X, Su S, Harshfield G, Treiber F, Snieder H. Genetic influence on blood pressure measured in the office, under laboratory stress and during real life. Hypertens Res. 2011;34(2):239–44.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Hottenga JJ, Whitfield JB, de Geus EJ, Boomsma DI, Martin NG. Heritability and stability of resting blood pressure in Australian twins. Twin Res Hum Genet. 2006;9(2):205–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Lawlor DA, Smith GD. Early life determinants of adult blood pressure. Curr Opin Nephrol Hypertens. 2005;14(3):259–64.CrossRefPubMedGoogle Scholar
  77. 77.
    Khan NA, Hemmelgarn B, Herman RJ, Rabkin SW, McAlister FA, Bell CM, et al. The 2008 Canadian hypertension education program recommendations for the management of hypertension: part 2-therapy. Can J Cardiol. 2008;24(6):465–75.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circ Res. 2014;114(2):354–67.CrossRefPubMedGoogle Scholar
  79. 79.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Juan L, Wang G, Radovich M, Schneider BP, Clare SE, Wang Y. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med Genomics. 2013;6 Suppl 1:S7.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Iaconetti C, Gareri C, Polimeni A, Indolfi C. Non-coding RNAs: the “dark matter” of cardiovascular pathophysiology. Int J Mol Sci. 2013;14(10):19987–20018.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Gupta SK, Piccoli MT, Thum T. Non-coding RNAs in cardiovascular ageing. Ageing Res Rev. 2014;17C:79–85.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Applied and Biomedical Sciences, Faculty of Science and TechnologyFederation University AustraliaMount HelenAustralia
  2. 2.Heart Failure Research GroupBaker IDI Heart and Diabetes InstituteMelbourneAustralia

Personalised recommendations