Social Tagging for e-Learning: An Approach Based on the Triplet of Learners, Learning Objects and Tags

  • Luciana A. M. Zaina
  • José F. Rodrigues Júnior
  • Anderson R. do Amaral
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 533)

Abstract

The emerging of the Web 2.0 has allowed users more interactivity with Web applications. Social tagging has been recognized as an important solution to the description of resources available on the Web. In the context of e-learning it may be used as an auxiliary mechanism to the composition of learning object metadata. This paper presents an approach based on the triplet of learners, learning objects and tags for providing the social tagging for e-learning. We performed an experiment with 336 technician students that marked 218 electronic learning objects for about 4,985 times. Although our results have shown that social tagging is a promising practice for e-learning some challenges on how to implement it has to be overcome.

Keywords

Folksonomy Social tagging Learning objects Web 2.0 

Notes

Acknowledgments

We thank the the students of Fernando Prestes school for participanting of our experiment.

References

  1. 1.
    Ahn, L., Dabbish, L.: Labeling images with a computer game. In: CHI 2004 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 319–326 (2004)Google Scholar
  2. 2.
    Bateman, S., Brooks, C., Mccalla, G.: Applying collaborative tagging to e-learning. In: Proceedings of ACM WWW (2007)Google Scholar
  3. 3.
    Dahl, D., Vossen, G.: Evolution of learning folksonomies: social tagging in e-learning repositories. Int. J. Technol. Enhanced Learn. 1, 35–46 (2008)CrossRefGoogle Scholar
  4. 4.
    Garcia-Penalvo, F.J., Morales, E., Barron, A.: Learning objects for e-activities in social web. WSEAS Trans. Syst. 6(3), 507–513 (2007)Google Scholar
  5. 5.
    Glavinić, V., Granić, A.: HCI research for e-Learning: adaptability and adaptivity to support better user interaction. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 359–376. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Google’s Custom Search API. https://developers.google.com/custom-search/?hl=en. Accessed October 2014
  7. 7.
    Gupta, M., Li, R., Yin, Z., Han, J.: Survey on social tagging techniques. Newsl. ACM SIGKDD Explor. 12(1), 58–72 (2010)CrossRefGoogle Scholar
  8. 8.
    IEEE LOM, Draft standard for learning object metadata. http://ltsc.ieee.org/wg12. Accessed December 2014
  9. 9.
    Jäschke, R., Hotho, A., Mitzlaff, F., Stumme, G.: Challenges in tag recommendations for collaborative tagging systems. In: Pazos Arias, J.J., Fernández Vilas, A., Díaz Redondo, R.P. (eds.) Recommender Systems for the Social Web. ISRL, vol. 32, pp. 65–87. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    McGreal, R.: Learning objects: a practical definition. Int. J. Inst. Technol. Distance Learn. 1(9), 21–31 (2004)MATHGoogle Scholar
  11. 11.
    Milicevic, A.K., Nanopoulos, A., Ivanovic, M.: Social tagging in recommender systems: a survey of the state-of-the-art and possible extensions. Artif. Intell. Rev. 33(3), 187–209 (2010)CrossRefGoogle Scholar
  12. 12.
    Monge, S., Ovelar, R., Azpeitia, I.: Repository 2.0: social dynamics to support community building in learning object repositories. Interdisc. J. E-Learn. Learn. Objects 4, 191 (2008). Informing Science InstituteMATHGoogle Scholar
  13. 13.
    O’Reilly, T.: What is Web 2.0: Design Patterns and Business Models for the Next Generation of Software (2005). http://oreilly.com/web2/archive/what-is-web-20.html
  14. 14.
    Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in social tagging systems using hierarchical clustering. In: Proceedings of the 2008 ACM Conference on Recommender Systems (2008)Google Scholar
  15. 15.
    Shih, W., Tseng, S.: Folksonomy-based indexing for retrieving tutoring resources. In: 2012 Seventh IEEE International Conference on Wireless, Mobile and Ubiquitous Technology in Education, pp. 97–101 (2012)Google Scholar
  16. 16.
    Sierra, J.L., Valmayor, A.F.: Tagging learning objects with evolving metadata schemas. In: Eighth IEEE International Conference on Advanced Learning Technologies, ICALT 2008, Santander, Spain (2008)Google Scholar
  17. 17.
    Sinclair, J., Cardew-Hall, M.: The folksonomy tag cloud: when is it useful? J. Inf. Sci. Feb. 34(1), 15–29 (2008)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Trant, J.: Studying social tagging and folksonomy a review and framework. J. Digit. Inf. 10(1), 1–42 (2009)Google Scholar
  20. 20.
    Vazquez, A.R., Ostrovskaya, Y.A.: Analysis of open technological standards for learning objects. In: Proceedings of 4th LA-Web, Puebla Cholula, Mexico, pp. 105–108 (2006)Google Scholar
  21. 21.
    Wal, T.V.: Explaining and showing broad and narrow folksonomies. Off the Top [blog] (2005). http://www.vanderwal.net/random/entrysel.php?blog=1635, Accessed 13 December 2013
  22. 22.
    Zaina, L.A.M., Almeida, T.A., Torres, G.M.: Can the online social networks be used as a learning tool? A case study in Twitter. Commun. Comput. Inf. Sci. (Print) 446, 114–123 (2014)CrossRefMATHGoogle Scholar
  23. 23.
    Zervas, P., Sampson, D.G.: The effect of users’ tagging motivation on the enlargement of digital educational resources metadata. Comput. Hum. Behav. 32, 292–300 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luciana A. M. Zaina
    • 1
  • José F. Rodrigues Júnior
    • 2
  • Anderson R. do Amaral
    • 1
    • 3
  1. 1.Federal University of São CarlosSorocabaBrazil
  2. 2.University of São PauloSão CarlosBrazil
  3. 3.ETEC FernandoPrestesSorocabaBrazil

Personalised recommendations