Advertisement

Genetic Predisposition to Waldenström Macroglobulinemia

  • Mary L. McMaster
  • Helga M. Ögmundsdóttir
Chapter

Abstract

Immunoglobulin M monoclonal gammopathy of undetermined significance (IgM-MGUS) and Waldenström macroglobulinemia (WM) comprise a continuum, with IgM-MGUS recognized as a precursor condition for WM. Following early observations of clustering of WM (and IgM-MGUS) in families, several lines of evidence have developed that support the hypothesis of a genetic component of WM susceptibility. Family studies have provided seminal observations in delineating the phenotypic spectrum of WM susceptibility, in providing the rationale for large population-based epidemiologic studies of IgM-MGUS and WM, and in providing both the basis and substrate for ongoing genetic studies aimed at identifying WM predisposition genes. Together, these investigations may help elucidate the host genetic factors underlying WM development and more broadly may provide insights into the aging immune system.

Keywords

Chronic Lymphocytic Leukemia Human Leukocyte Antigen Familial Cluster MYD88 L265P Familial Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kyle RA. Monoclonal gammopathy of undetermined significance. Blood Rev. 1994;8:135–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Kyle RA, Therneau TM, Rajkumar SV, Remstein ED, Offord JR, Larson DR, Plevak MF, Melton III LJ. Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Blood. 2003;102(10):3759–64.CrossRefPubMedGoogle Scholar
  3. 3.
    Massari R, Fine JM, Metais R. Waldenström’s macroglobulinæmia observed in two brothers. Nature. 1962;196:176–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Blattner WA, Garber JE, Mann DL, McKeen EA, Henson R, McGuire DB, Fisher WB, Bauman AW, Goldin LR, Fraumeni Jr JF. Waldenström’s macroglobulinemia and autoimmune disease in a family. Ann Intern Med. 1980;93:830–2.CrossRefPubMedGoogle Scholar
  5. 5.
    Fine JM, Lambin P, Massari M, Leroux P. Malignant evolution of asymptomatic monoclonal IgM after seven and fifteen years in two siblings of a patient with Waldenström’s macroglobulinemia. Acta Med Scand. 1982;211:237–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Fine JM, Muller JY, Rochu D, Marneux M, Gorin NC, Fine A, Lambin P. Waldenström’s macroglobulinemia in monozygotic twins. Acta Med Scand. 1986;220(4):369–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Gétaz EP, Staples WG. Familial Waldenström’s macroglobulinaemia: a case report. S Afr Med J. 1977;51:891–2.PubMedGoogle Scholar
  8. 8.
    Renier G, Ifrah N, Chevailler A, Saint-Andre JP, Boasson M, Hurez D. Four brothers with Waldenstrom’s macroglobulinemia. Cancer. 1989;64(7):1554–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Taleb N, Tohme A, Abi JD, Kattan J, Salloum E. Familial macroglobulinemia in a Lebanese family with two sisters presenting Waldenström’s disease. Acta Oncol. 1991;30(6):703–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Youinou P, Le Goff P, Saleun JP, Rivat L, Morin JF, Fauchier C, le Menn G. Familial occurrence of monoclonal gammapathies. Biomedicine. 1978;28(4):226–32.PubMedGoogle Scholar
  11. 11.
    Coste F, Massais P, Menkes C. Un cas de macroglobulinemia. Rev Rhumat. 1964;31:37–9.Google Scholar
  12. 12.
    McMaster ML, Csako G, Giambarresi TR, Vasquez L, Berg M, Saddlemire S, Hulley B, Tucker MA. Long-term evaluation of three multiple-case Waldenström macroglobulinemia families. Clin Cancer Res. 2007;13(17):5063–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Seligmann M. A genetic predisposition to Waldenstrom’s macroglobulinaemia. Acta Med Scand. 1966;179(S445):140–6.CrossRefGoogle Scholar
  14. 14.
    Seligmann M, Danon F, Mihaesco C, Fudenberg HH. Immunoglobulin abnormalities in families of patients with Waldenström’s macroglobulinemia. Am J Med. 1967;43(1):66–83.CrossRefPubMedGoogle Scholar
  15. 15.
    Vannotti A. Etude clinique dun cas de macroglobulinemia de Waldenstrom a caractere familial, associe a des trouble endocriniens. Schweiz Med Wochenschr. 1963;93:1744–6.Google Scholar
  16. 16.
    Fine JM, Massari R, Boffa GA, Lambin P. Macroglobulinémie à caractère familial présente chez trois sujets d’une même fratrie. Transfusion (Paris). 1966;9(4):333–41.CrossRefGoogle Scholar
  17. 17.
    Deshpande HA, Hu XP, Marino P, Jan NA, Wiernik PH. Anticipation in familial plasma cell dyscrasias. Br J Haematol. 1998;103(3):696–703.CrossRefPubMedGoogle Scholar
  18. 18.
    Spengler GA, Butler R, Fischer CH, Ryssel HJ, Schmid E, Siebner H. On the question of familial occurrence of paraproteinemia. Helv Med Acta. 1966;3:208–19.Google Scholar
  19. 19.
    Kalff MW, Hijmans W. Immunoglobulin analysis in families of macroglobulinaemia patients. Clin Exp Immunol. 1969;5(5):479–98.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Linet MS, Humphrey RL, Mehl ES, Brown LM, Pottern LM, Bias WB, McCaffrey L. A case-control and family study of Waldenstrom’s macroglobulinemia. Leukemia. 1993;7(9):1363–9.PubMedGoogle Scholar
  21. 21.
    Custodi P, Cerutti A, Cassani P, Perazzi C, Ravanini P, Fortina G. Familial occurrence of IgMk gammopathy: no role of HCV infection. Haematology. 1995;80:484–5.Google Scholar
  22. 22.
    Manschot SM, Notermans NC, van den Berg LH, Verschuuren JJGM, Lokhorst HM. Three families with polyneuropathy associated with monoclonal gammopathy. Arch Neurol. 2000;57(5):740–2.CrossRefPubMedGoogle Scholar
  23. 23.
    Fraumeni JF, Wertelecki W, Blattner WA, Jensen RD, Leventhal BG. Varied manifestations of a familial lymphoproliferative disorder. Am J Med. 1975;59(1):145–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Bjőrnsson OG, Arnason A, Gudmunosson S, Jensson O, Olafsson S, Valimarsson H. Macroglobulinaemia in an Icelandic family. Acta Med Scand. 1978;203(4):283–8.PubMedGoogle Scholar
  25. 25.
    Steingrimsdóttir H, Einarsdóttir HK, Haraldsdóttir V, Ogmundsdóttir HM. Familial monoclonal gammopathy: hyper-responsive B cells in unaffected family members. Eur J Haematol. 2011;86(5):396–404.CrossRefPubMedGoogle Scholar
  26. 26.
    Williams Jr RC, Erickson JL, Polesky HF, Swaim WR. Studies of monoclonal immunoglobulins (M-components) in various kindreds. Ann Intern Med. 1967;67(2):309–27.CrossRefPubMedGoogle Scholar
  27. 27.
    Zawadzki ZA, Yoshiharu A, Kraj MA, Haradin AR, Fisher B. Familial immunopathies: report of nine families and survey of literature. Cancer. 1977;40:2094–101.CrossRefPubMedGoogle Scholar
  28. 28.
    Busis NA, Halperin JJ, Stefansson K, Kwiatkowski DJ, Sagar SM, Schiff SR, Logigian EL. Peripheral neuropathy, high serum IgM, and paraproteinemia in mother and son. Neurology. 1985;35:679–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Jensen TS, Schroder HD, Jonsson V, Ernerudh J, Stigsby B, Kamieniecka Z, Hippe E, Trojaborg W. IgM monoclonal gammopathy and neuropathy in two siblings. J Neurol Neurosurg Psych. 1988;51(10):1308–15.CrossRefGoogle Scholar
  30. 30.
    Ögmundsdóttir HM, Jóhannesson GM, Sveinsdóttir S, Einarsdóttir S, Hegeman A, Jensson O. Familial macroglobulinaemia: hyperactive B-cells but normal natural killer function. Scand J Immunol. 1994;40(2):195–200.CrossRefPubMedGoogle Scholar
  31. 31.
    McMaster ML. Familial Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30(2):146–52.CrossRefPubMedGoogle Scholar
  32. 32.
    Altieri A, Bermejo JL, Hemminki K. Familial aggregation of lymphoplasmacytic lymphoma with non-Hodgkin lymphoma and other neoplasms. Leukemia. 2005;19(12):2342–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Kristinsson SY, Björkholm M, Goldin LR, McMaster ML, Turesson I, Landgren O. Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia patients: a population-based study in Sweden. Blood. 2008;112(8):3052–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kristinsson SY, Goldin LR, Björkholm M, Koshiol J, Turesson I, Landgren O. Genetic and immune-related factors in the pathogenesis of lymphoproliferative and plasma cell malignancies. Haematologica. 2009;94:1581–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Frank C, Fallah M, Chen T, Mai EK, Sundquist J, Försti A, Hemminki K. Search for familial clustering of multiple myeloma with any cancer. Leukemia. 2016;30:627–32.CrossRefPubMedGoogle Scholar
  36. 36.
    Brandfors L, Kimby E, Lundqvist K, Melin B, Lindh J. Familial Waldenstrom’s macroglobulinemia and relation to immune defects, autoimmune diseases, and haematological malignancies - a population-based study from northern Sweden. Acta Oncol. 2016;55(1):91–8.CrossRefGoogle Scholar
  37. 37.
    Vajdic CM, Landgren O, McMaster ML, Slager SL, Brooks-Wilson A, Smith A, Staines A, Dogan A, Ansell SM, Sampson JN, Morton LM, Linet MS. Medical history, lifestyle, family history, and occupational risk factors for lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia: the InterLymph Non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):87–97.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Treon SP, Hunter ZR, Aggarwal A, Ewen EP, Masota S, Lee C, Santos DD, Hatjiharissi E, Xu L, Leleu X, Tournihac O, Patterson CJ, Manning R, Branagan AR, Morton CC. Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol. 2006;17(3):488–94.CrossRefPubMedGoogle Scholar
  39. 39.
    Hanzis C, Ojha RP, Hunter Z, Manning R, Lewicki M, Brodsky P, Ioakimidis L, Tripsas C, Patterson CJ, Sheehy P, Treon SP. Associated malignancies in patients with Waldenstrom’s macroglobulinemia and their kin. Clin Lymphoma Myeloma Leuk. 2011;11(1):88–92.CrossRefPubMedGoogle Scholar
  40. 40.
    Ojha RP, Hanzis CA, Hunter ZR, Greenland S, Offutt-Powell TN, Manning RJ, Lewicki M, Brodsky PS, Ioakimidis L, Tripsas CK, Patterson CJ, Sheehy P, Singh KP, Treon SP. Family history of non-hematologic cancers among Waldenstrom macroglobulinemia patients: a preliminary study. Cancer Epidemiol. 2012;36(3):294–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Kristinsson SY, Goldin LR, Turesson I, Björkholm M, Landgren O. Familial aggregation of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia with solid tumors and myeloid malignancies. Acta Haematol. 2012;127:173–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Royer RH, Koshiol J, Giambarresi TR, Vasquez LG, Pfeiffer RM, McMaster ML. Differential characteristics of Waldenström macroglobulinemia according to patterns of familial aggregation. Blood. 2010;115(22):4464–71.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Elves MW, Brown AK. Cytogenetic studies in a family with Waldenstrom’s macroglobuliaemia. J Med Genet. 1968;5(2):118–22.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    McMaster ML, Giambarresi T, Vasquez L, Goldstein AM, Tucker MA. Cytogenetics of familial Waldenström’s macroglobulinemia: in pursuit of an understanding of genetic predisposition. Clin Lymphoma. 2005;5(4):230–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Groves FD, Travis LB, Devesa SS, Ries LAG, Fraumeni Jr JF. Waldenstrom’s macroglobulinemia: incidence patterns in the United States, 1988–1994. Cancer. 1998;82(6):1078–81.CrossRefPubMedGoogle Scholar
  46. 46.
    Petite J, Cruchaud A. Qualitative and quantitative abnormalities of immunoglobulins in relatives of patients with idiopathic paraproteinemia: a study of 12 families. Helv Med Acta. 1969;35:248–65.Google Scholar
  47. 47.
    Kristinsson SY, Koshiol J, Björkholm M, Goldin LR, McMaster ML, Turesson I, Landgren O. Immune-related and inflammatory conditions and risk of lymphoplasmacytic lymphoma or Waldenström macroglobulinemia. J Natl Cancer Inst. 2010;102(8):557–67.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McMaster ML, Csako G. Protein electrophoresis, immunoelectrophoresis and immunofixation electrophoresis as predictors for high-risk phenotype in familial Waldenström macroglobulinemia. Int J Cancer. 2008;122:1183–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Crisp HC, Quinn JM. Quantitative immunoglobulins in adulthood. Allergy Asthma Proc. 2009;30:649–54.CrossRefPubMedGoogle Scholar
  50. 50.
    Lock RJ, Unsworth DJ. Immunoglobulins and immunoglobulin subclasses in the elderly. Ann Clin Biochem. 2003;40(2):143–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Ögmundsdóttir HM, Sveinsdóttir S, Sigfússon A, Skaftadóttir I, Jónasson JG, Agnarsson BA. Enhanced B cell survival in familial macroglobulinaemia is associated with increased expression of Bcl-2. Clin Exp Immunol. 1999;117(2):252–60.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Treon SP, Tripsas C, Hanzis C, Ioakimidis L, Patterson CJ, Manning RJ, Sheehy P, Turnbull B, Hunter ZR. Familial disease predisposition impacts treatment outcome in patients with Waldenström macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2012;12(6):433–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Steingrímsson V, Lund SH, Turesson I, Goldin LR, Björkholm M, Landgren O, Kristinsson SY. Population-based study on the impact of the familial form of Waldenström macroglobulinemia on overall survival. Blood. 2015;125(13):2174–5.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Schop RF, Kuehl WM, Van Wier SA, Ahmann GJ, Price-Troska T, Bailey RJ, Jalal SM, Qi Y, Kyle RA, Greipp PR, Fonseca R. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100(8):2996–3001.CrossRefPubMedGoogle Scholar
  55. 55.
    McMaster ML, Goldin LR, Bai Y, Ter-Minassian M, Boehringer S, Giambarresi TR, Vasquez LG, Tucker MA. Genomewide linkage screen for Waldenström macroglobulinemia susceptibility loci in high-risk families. Am J Hum Genet. 2006;79(4):695–701.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liang XS, Caporaso N, McMaster ML, Ng D, Landgren O, Yeager M, Chanock S, Goldin LR. Common genetic variants in candidate genes and risk of familial lymphoid malignancies. Br J Haematol. 2009;146:418–23.CrossRefPubMedGoogle Scholar
  57. 57.
    Price P, Witt C, Allcock R, Sayer D, Garlepp M, Kok CC, French M, Mallal S, Christiansen F. The genetic basis for the association of the 8.1 ancestral haplogype (A1, Bi, DR3) with multiple immunopathological diseases. Immunol Rev. 1999;167:257–74.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang SS, Lu Y, Rothman N, Abdou AM, Cerhan JR, De Roos A, Davis S, Severson RK, Cozen W, Chanock SJ, Bernstein L, Morton LM, Hartge P. Variation in effects of non-Hodgkin lymphoma risk factors according to the human leukocyte antigen (HLA)-DRB1*01:01 allele and ancestral haplotype 8.1. PLoS One. 2011;6(11):326949.CrossRefGoogle Scholar
  59. 59.
    Abdou AM, Gao X, Cozen W, Cerhan JR, Rothman N, Martin MP, Davis S, Schenk M, Chanock SJ, Hartge P, Carrington M, Wang SS. Human leukocyte antigen (HLA) A1-B8-DR3 (8.1) haplotype, tumor necrosis factor (TNF) G-308A, and risk of non-Hodgkin lymphoma. Leukemia. 2010;24(5):1055–88.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Grass S, Preuss KD, Wikowicz A, Terpos E, Ziepert M, Nikolaus D, Yang Y, Fadle N, Regitz E, Dimopoulos MA, Treon SP, Hunter ZR, Pfreundschuh M. Hyperphosphorylated paratarg-7: a new molecularly defined risk factor for monoclonal gammopathy of undetermined significance of the IgM type and Waldenstrom macroglobulinemia. Blood. 2011;117(10):2918–23.CrossRefPubMedGoogle Scholar
  61. 61.
    Adamia S, Crainie M, Kriangkum J, Mant MJ, Belch AR, Pilarski LM. Abnormal expression of hyaluronan synthases in patients with Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30(2):165–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Adamia S, Reichert AA, Kuppusamy H, Kriangkum J, Ghosh A, Hodges JJ, Pilarski PM, Treon SP, Mant MJ, Reiman T, Belch AR, Pilarski LM. Inherited and acquired variations in the hyaluronan synthase 1 (HAS1) gene may contribute to disease progression in multiple myeloma and Waldenstrom macroglobulinemia. Blood. 2008;112(13):5111–21.CrossRefPubMedGoogle Scholar
  63. 63.
    Ghosh A, Kuppusamy H, Pilarski LM. Aberrant splice variants of HAS1 (Hyaluronan Synthase 1) multimerize with and modulate normally spliced HAS1 protein: a potential mechanism promoting human cancer. J Biol Chem. 2009;284(28):18840–50.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kuppusamy H, Ögmundsdóttir HM, Baigorri E, Warkentin A, Steingrimsdóttir H, Haraldsdóttir V, Mant MJ, Mackey J, Johnston JB, Adamia S, Belch AR, Pilarski LM. Inherited polymorphisms in hyaluronan synthase 1 predict risk of systemic B-cell malignancies but not of breast cancer. PLoS One. 2014;9(6):3100691.CrossRefGoogle Scholar
  65. 65.
    Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.CrossRefPubMedGoogle Scholar
  66. 66.
    Pertesi M, Galia P, Nazaret N, Vallée M, Garderet L, Leleu X, Avet-Loiseau H, Foll M, Byrnes G, Lachuer J, McKay JD, Dumontet C. Rare circulating cells in familial Waldenström macroglobulinemia displaying the MYD88 L265P mutation are enriched by Epstein-Barr virus immortalization. PLoS One. 2015;10(9):30136515. doi: 10.1371/journal.pone.0136505.CrossRefGoogle Scholar
  67. 67.
    Jacobs KB, Yeager M, Cullen MG, Zhang XJ, Boland J, Bacior J, Lonsberry V, Matthews C, Roberson D, Chen QA, Burdett L, Menashe I, Yang XR, Goldin LR, McMaster ML, Caporaso NE, Taylor PR, Landi MT, Sampson J, Chatterjee N, Nickerson ML, Mcgee K, Dean MC, Khan J, Tucker MA, Chanock SJ, Goldstein AM. Realities and limitations of coverage in current “whole”-exome sequencing capture approaches [abstract]. Genet Epidemiol. 2010;34(8):919–20.Google Scholar
  68. 68.
    McMaster ML, Goldin LR, Rotunno M, He J, Burdette L, Hutchinson A, Boland J, Yeager M, Tucker MA, Chanock SJ, Caporaso NE. Exploration of rare variants from exome sequencing in families with Waldenström macroglobulinemia [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2014, Apr 5–9; San Diego, CA: AACR; 2014. Abstract nr 1300.Google Scholar
  69. 69.
    Roccaro AM, Sacco A, Shi J, Chiarini M, Perilla-Glen A, Manier S, Glavey S, Aljawai Y, Mishima Y, Kawano Y, Moschetta M, Correll M, Improgo MR, Brown JR, Imberti L, Rossi G, Castillo JJ, Treon SP, Freedman ML, Van Allen EM, Hide W, Hiller E, Rainville I, Ghobrial IM. Exome sequencing reveals recurrent germ line variants in patients with familial Waldenström macroglobulinemia. Blood. 2016;127(21):2598–606.CrossRefPubMedGoogle Scholar
  70. 70.
    Jaccottet MA, Ramel C. A propos des paraproteinoses atypique. Praxis. 1965;54:302–11.Google Scholar
  71. 71.
    Jensson Ó, Björnsson ÓG, Árnason A, Birgisdóttir B, Pepys MB. Serum amyloid P-component and C-reactive protein in serum of healthy Icelanders and members of an Icelandic family with macroglobulinaemia. Acta Med Scand. 1982;211:341–5.CrossRefPubMedGoogle Scholar
  72. 72.
    Wu SP, Minter A, Costello R, Zinglone A, Lee CK, Au WY, Landgren O. MGUS prevalence in an ethnically Chinese population in Hong Kong. Blood. 2013;121(12):2263–364.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Genetic Epidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, National Institutes of Health, U.S. Department of Health and Human ServicesBethesdaUSA
  2. 2.Commissioned Corps of the U.S. Public Health Service, U.S. Department of Health and Human ServicesWashington, DCUSA
  3. 3.Faculty of MedicineUniversity of IcelandReykjavíkIceland

Personalised recommendations