AntWMNet – A Hybrid Routing Algorithm for Wireless Mesh Networks Based on Ant Colony Optimisation

  • Luis J. Mariscal
  • Alicia Triviño
  • Fernando BoavidaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9071)


Routing in wireless mesh networks is of paramount importance to their good performance. As this type of network is becoming key to many application scenarios, it is fundamental to guarantee that routing is as efficient as possible. Despite extensive research work carried out in the past, existing routing algorithms have problems in terms of latency, throughput, network overhead, and/or scalability, depending on their type. In the current paper we propose a hybrid wireless mesh networks routing algorithm that addresses the referred problems, exploring the ant colony optimisation paradigm. The algorithm, named AntWMNet, was extensively studied through simulation using OMNET++, and the results show that it clearly outperforms the reference AODV algorithm.


Wireless mesh networks Routing algorithms Ant colony optimisation 



The authors would like to thank Marco Dorigo, Frederick Ducatelle, Mudassar Farooq and Alfonso Ariza for their help, influence with their previous work and kindly replied messages.

The work presented in this paper was partially financed by the University of Málaga and by the iCIS project (CENTRO-07-ST24-FEDER-002003,


  1. 1.
    Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. J. Comput. Netw. 47(4), 445–487 (2005)CrossRefzbMATHGoogle Scholar
  2. 2.
    Siraj, M.: A survey on routing algorithms and routing metrics for wireless mesh networks. World Appl. Sci. J. 30(7), 870–886 (2014). doi: 10.5829/idosi.wasj.2014.30.07.1465, ISSN 1818–4952
  3. 3.
    Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector (AODV) Routing. IETF. RFC 3561, July 2003Google Scholar
  4. 4.
    Park, V., Corson, S.: Temporally-Ordered Routing Algorithm (TORA) Version 1 Functional Specification. Internet Draft draft-ietf-manet-tora-spec-04.txt. IETF, 20 July 2001Google Scholar
  5. 5.
    Johnson, D., Hu, Y., Maltz, D.: The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4. IETF. RFC 4728, February 2007Google Scholar
  6. 6.
    Corson, M.S., Ephremides, A.: A distributed routing algorithm for mobile wireless networks. ACM/Baltzer Wirel. Netw. 1(1), 61–81 (1995)CrossRefGoogle Scholar
  7. 7.
    Perkins, C., Bhagwat, P.: Highly Dynamic Destination-Sequence Distance Vector, Routing (DSDV) for Mobile Computers. In: Proceedings of the ACM SIGCOMM Computer Communication Review, pp. 234–244 (1994)Google Scholar
  8. 8.
    Clausen, T., Jacquet, P. (eds.): Optimized Link State Routing Protocol (OLSR). IETF. RFC 3626, October 2003Google Scholar
  9. 9.
    Di Caro, G.A., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. J. Artif. Intell. Res. (JAIR) 9, 317–365 (1998)zbMATHGoogle Scholar
  10. 10.
    Di Caro, G.A., Ducatelle, F., Gambardella, L.M.: AntHocNet: An ant-based hybrid routing algorithm for mobile ad hoc networks. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 461–470. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Sharad, S.P., Kumar, S., Singh, B.: AntMeshNet: An ant colony optimization based routing approach to wireless mesh networks. Int. J. Appl. Metaheuristic Comput. 5(1), 20–45 (2014)CrossRefGoogle Scholar
  12. 12.
    OMNet ++ Discrete Event Simulator. Accessed on 26 February 2015
  13. 13.
    Ariza Quintana, A., Dreibholz, T., Bojthe, Z., Maureira, J.C., Jonsson, K.V., Borbély, T., Mészáros, L., Yousaf, F.Z., Janota, V., Sommer, C.: Inetmanet: An Open Source communication network simulation package for the OMNEST/OMNeT ++ simulation system. Contains models for several Internet protocols: TCP/IP, UDP, Ethernet: PPP, MPLS with LDP and RSVP-TE signalling (2011). Open Source software
  14. 14.
    Günes, M., Sorges, U., Bouazzi, I.: ARA – The Ant-colony based Routing Algorithm for MANETs. In: Proceedings of the ICPP International Workshop on Ad Hoc Networks (IWAHN) (2002)Google Scholar
  15. 15.
    Martin, R., Stephen, W.: Termite: A swarm intelligence routing algorithm for mobile wireless ad-hoc networks. In: Ajith, A., Crina, G., Vitorino, R. (eds.) Swarm Intelligence and Data Mining. SCI, vol. 31, pp. 155–184. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly-resilient, energy-efficient multipath routing in wireless sensor networks. Mobile Comput. Commun. Rev. 1(2), 1–13 (2002) Google Scholar
  17. 17.
    Wang, L., Shu, Y.T., Yang, O.W.W., Dong, M., Zhang, L.F.: Adaptive multipath source routing in wireless ad hc networks. In: Proceedings of the IEEE International Conference of Communications (2001)Google Scholar
  18. 18.
    Liu, Z., Kwiatowska, M., Constantinou, C.: A self-organised emergent routing mechanism for mobile ad hoc networks. Europ. Trans. Telecommun. (ETT) 16(5), 457–470 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luis J. Mariscal
    • 1
  • Alicia Triviño
    • 1
  • Fernando Boavida
    • 2
    Email author
  1. 1.Universidad de MálagaMálagaSpain
  2. 2.CISUC, Departamento de Engenharia InformáticaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations