Advertisement

Drug-Loaded Perfluorocarbon Nanodroplets for Ultrasound-Mediated Drug Delivery

  • Natalya Rapoport
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 880)

Abstract

The interaction of nanoparticles with directed energy is a novel application in targeted drug delivery. This chapter focuses on perfluorocarbon nanoemulsions, whose action in drug delivery depends on the ultrasound-triggered phase shift from liquid to gaseous state. These nanoemulsions have great potential for unloading encapsulated drugs at a desired time and location in the body in response to directed ultrasound. In addition, they actively alter their nano-environment for enhancing drug transport through various biological barriers to sites of action, which significantly enhances therapeutic outcome.

Keywords

Perfluorocarbon nanodroplet Ultrasound Drug delivery 

References

  1. Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987PubMedCrossRefGoogle Scholar
  2. Alakhov V, Moskaleva E, Batrakova EV, Kabanov AV (1996) Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug Chem 7:209–216PubMedCrossRefGoogle Scholar
  3. Alakhova DY, Rapoport NY, Batrakova EV, Timoshin AA, Li S, Nicholls D, Alakhov VY, Kabanov AV (2010) Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J Control Release 142:89–100PubMedCentralPubMedCrossRefGoogle Scholar
  4. Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425CrossRefGoogle Scholar
  5. Apfel RE (1998) Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis, US Patent 5840276, 1998Google Scholar
  6. Barber EJ, Cady GH (1956) Vapor pressures of perfluoropentanes. J Phys Chem 60:504–505CrossRefGoogle Scholar
  7. Batrakova EV, Han HY, Miller DW, Kabanov AV (1998) Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm Res 15:1525–1532PubMedCrossRefGoogle Scholar
  8. Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A (1999) Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res 16:1373–1379PubMedCrossRefGoogle Scholar
  9. Batrakova EV, Li S, Elmquist WF, Miller DW, Alakhov VY, Kabanov AV (2001) Mechanism of sensitization of MDR cancer cells by pluronic block copolymers: selective energy depletion. Br J Cancer 85:1987–1997PubMedCentralPubMedCrossRefGoogle Scholar
  10. Batrakova EV, Li S, Alakhov VY, Elmquist WF, Miller DW, Kabanov AV (2003) Sensitization of cells overexpressing multidrug-resistant proteins by pluronic P85. Pharm Res 20:1581–1590PubMedCentralPubMedCrossRefGoogle Scholar
  11. Becher H, Burns PN (2000) Handbook for contrast echocardiography. Springer, Frankfurt/New YorkGoogle Scholar
  12. Becher H, Lofiego C, Mitchell A, Timperley J (2005) Current indications for contrast echocardiography imaging. Eur J Echocardiogr 6(Suppl 2):S1–S5PubMedCrossRefGoogle Scholar
  13. Borden MA, Kruse DE, Caskey CF, Zhao S, Dayton PA, Ferrara KW (2005) Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans Ultrason Ferroelectr Freq Control 52:1992–2002PubMedCentralPubMedCrossRefGoogle Scholar
  14. Borden MA, Zhang H, Gillies RJ, Dayton PA, Ferrara KW (2008) A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 29:597–606PubMedCentralPubMedCrossRefGoogle Scholar
  15. Burke CW, Klibanov AL, Sheehan JP, Price RJ (2011) Inhibition of glioma growth by microbubble activation in a subcutaneous model using low duty cycle ultrasound without significant heating. J Neurosurg 114(6):1654–1661PubMedCrossRefPubMedCentralGoogle Scholar
  16. Campbell RB (2006) Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med Chem 6:503–512PubMedCrossRefGoogle Scholar
  17. Caruthers SD, Cyrus T, Winter PM, Wickline SA, Lanza GM (2009) Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:311–323PubMedCrossRefGoogle Scholar
  18. Caskey CF, Stieger SM, Qin S, Dayton PA, Ferrara KW (2007) Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J Acoust Soc Am 122:1191–1200PubMedCrossRefGoogle Scholar
  19. Caskey CF, Qin S, Dayton PA, Ferrara KW (2009a) Microbubble tunneling in gel phantoms. J Acoust Soc Am 125:EL183–EL189PubMedCentralPubMedCrossRefGoogle Scholar
  20. Caskey CF, Qin S, Ferrara KW (2009b) Ultrasound mediated drug delivery: the effect of microbubbles on a gel boundary. Conf Proc IEEE Eng Med Biol Soc 2009:134–136PubMedGoogle Scholar
  21. Chen H, Brayman AA, Bailey MR, Matula TJ (2010) Blood vessel rupture by cavitation. Urol Res 38:321–326PubMedCentralPubMedCrossRefGoogle Scholar
  22. Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ (2011) Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett 106:034301PubMedCentralPubMedCrossRefGoogle Scholar
  23. Chen X, Wang J, Versluis M, de Jong N, Villanueva FS (2013) Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects. Rev Sci Instrum 84:063701PubMedCentralPubMedCrossRefGoogle Scholar
  24. Cohn CS, Cushing MM (2009) Oxygen therapeutics: perfluorocarbons and blood substitute safety. Crit Care Clin 25:399–414, Table of ContentsPubMedCrossRefGoogle Scholar
  25. Dalecki D (2004) Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng 6:229–248PubMedCrossRefGoogle Scholar
  26. Dayton P, Klibanov A, Brandenburger G, Ferrara K (1999) Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol 25:1195–1201PubMedCrossRefGoogle Scholar
  27. Dayton PA, Zhao S, Bloch SH, Schumann P, Penrose K, Matsunaga TO, Zutshi R, Doinikov A, Ferrara KW (2006) Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy. Mol Imaging 5:160–174PubMedCentralPubMedGoogle Scholar
  28. Deckers R, Moonen CT (2010) Ultrasound triggered, image guided, local drug delivery. J Control Release 148(1):25–33PubMedCrossRefGoogle Scholar
  29. Dewhirst MW, Vujaskovic Z, Jones E, Thrall D (2005) Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia 21:779–790PubMedCrossRefGoogle Scholar
  30. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344PubMedCrossRefGoogle Scholar
  31. Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, Poff J, Xie J, Libutti SK, Li KC, Wood BJ (2007) Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 13:2722–2727PubMedCentralPubMedCrossRefGoogle Scholar
  32. Fabiilli ML, Haworth KJ, Fakhri NH, Kripfgans OD, Carson PL, Fowlkes JB (2009) The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control 56:1006–1017PubMedCentralPubMedCrossRefGoogle Scholar
  33. Fabiilli ML, Haworth KJ, Sebastian IE, Kripfgans OD, Carson PL, Fowlkes JB (2010a) Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion. Ultrasound Med Biol 36:1364–1375PubMedCentralPubMedCrossRefGoogle Scholar
  34. Fabiilli ML, Lee JA, Kripfgans OD, Carson PL, Fowlkes JB (2010b) Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharm Res 27:2753–2765PubMedCentralPubMedCrossRefGoogle Scholar
  35. Faez T, Emmer M, Kooiman K, Versluis M, van der Steen A, de Jong N (2013) 20 years of ultrasound contrast agent modeling. IEEE Trans Ultrason Ferroelectr Freq Control 60:7–20PubMedCrossRefGoogle Scholar
  36. Ferrara KW (2008) Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev 60:1097–1102PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447PubMedCrossRefGoogle Scholar
  38. Frenkel V, Kimmel E, Iger Y (2000a) Ultrasound-facilitated transport of silver chloride (AgCl) particles in fish skin. J Control Release 68:251–261PubMedCrossRefGoogle Scholar
  39. Frenkel V, Kimmel E, Iger Y (2000b) Ultrasound-induced intercellular space widening in fish epidermis. Ultrasound Med Biol 26:473–480PubMedCrossRefGoogle Scholar
  40. Frenkel V, Etherington A, Greene M, Quijano J, Xie J, Hunter F, Dromi S, Li KC (2006) Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol 13:469–479PubMedCrossRefGoogle Scholar
  41. Frulio N, Trillaud H, Deckers R, Lepreux S, Moonen C, Quesson B (2010) Influence of ultrasound induced cavitation on magnetic resonance imaging contrast in the rat liver in the presence of macromolecular contrast agent. Invest Radiol 45:282–287PubMedCrossRefGoogle Scholar
  42. Gaber MH, Wu NZ, Hong K, Huang SK, Dewhirst MW, Papahadjopoulos D (1996) Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 36:1177–1187PubMedCrossRefGoogle Scholar
  43. Gaitan DF, Tessien RA, Hiller RA, Gutierrez J, Scott C, Tardif H, Callahan B, Matula TJ, Crum LA, Holt RG, Church CC, Raymond JL (2010) Transient cavitation in high-quality-factor resonators at high static pressures. J Acoust Soc Am 127:3456–3465PubMedCrossRefGoogle Scholar
  44. Gao Z, Fain HD, Rapoport N (2004) Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm 1:317–330PubMedCentralPubMedCrossRefGoogle Scholar
  45. Gao Z, Kennedy AM, Christensen DA, Rapoport NY (2008) Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics 48:260–270PubMedCentralPubMedCrossRefGoogle Scholar
  46. Giesecke T, Hynynen K (2003) Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol 29:1359–1365PubMedCrossRefGoogle Scholar
  47. Hancock H, Dreher MR, Crawford N, Pollock CB, Shih J, Wood BJ, Hunter K, Frenkel V (2009a) Evaluation of pulsed high intensity focused ultrasound exposures on metastasis in a murine model. Clin Exp Metastasis 26:729–738PubMedCentralPubMedCrossRefGoogle Scholar
  48. Hancock HA, Smith LH, Cuesta J, Durrani AK, Angstadt M, Palmeri ML, Kimmel E, Frenkel V (2009b) Investigations into pulsed high-intensity focused ultrasound-enhanced delivery: preliminary evidence for a novel mechanism. Ultrasound Med Biol 35:1722–1736PubMedCentralPubMedCrossRefGoogle Scholar
  49. Hauck ML, LaRue SM, Petros WP, Poulson JM, Yu D, Spasojevic I, Pruitt AF, Klein A, Case B, Thrall DE, Needham D, Dewhirst MW (2006) Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin Cancer Res 12:4004–4010PubMedCrossRefGoogle Scholar
  50. Hayat H, Friedberg I (1986) Heat-induced alterations in cell membrane permeability and cell inactivation of transformed mouse fibroblasts. Int J Hyperthermia 2:369–378PubMedCrossRefGoogle Scholar
  51. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–1166PubMedCentralPubMedCrossRefGoogle Scholar
  52. Hitchcock KE, Holland CK (2010) Ultrasound-assisted thrombolysis for stroke therapy: better thrombus break-up with bubbles. Stroke 41:S50–S53, a journal of cerebral circulationPubMedCentralPubMedCrossRefGoogle Scholar
  53. Hitchcock KE, Ivancevich NM, Haworth KJ, Caudell Stamper DN, Vela DC, Sutton JT, Pyne-Geithman GJ, Holland CK (2011) Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model. Ultrasound Med Biol 37:1240–1251PubMedCentralPubMedCrossRefGoogle Scholar
  54. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612PubMedCentralPubMedCrossRefGoogle Scholar
  55. Holland CK, McPherson DD (2009) Echogenic lipsomes for targeted drug delivery. Proc IEEE Int Symp Biomed Imaging 2009:755–758PubMedCentralPubMedGoogle Scholar
  56. Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818PubMedCrossRefGoogle Scholar
  57. Kaneda MM, Caruthers S, Lanza GM, Wickline SA (2009) Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng 37:1922–1933PubMedCentralPubMedCrossRefGoogle Scholar
  58. Kawabata K, Sugita N, Yoshikawa H, Azama T, Umemura S (2005) Nanoparticles with multiple perfluorocarbons for controllable ultrasound-induced phase shift. Jpn J Appl Phys 44:4548–4552CrossRefGoogle Scholar
  59. Kawabata K, Yoshizawa A, Asami R (2006) Site-specific contrast imaging with locally induced microbubble from liquid precursors. Proc IEEE Int Ultrasonic Symp 517–520Google Scholar
  60. Kheirolomoom A, Dayton PA, Lum AF, Little E, Paoli EE, Zheng H, Ferrara KW (2007) Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J Control Release 118:275–284PubMedCentralPubMedCrossRefGoogle Scholar
  61. Kheirolomoom A, Mahakian LM, Lai CY, Lindfors HA, Seo JW, Paoli EE, Watson KD, Haynam EM, Ingham ES, Xing L, Cheng RH, Borowsky AD, Cardiff RD, Ferrara KW (2010) Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity. Mol Pharm 7:1948–1958PubMedCentralPubMedCrossRefGoogle Scholar
  62. Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci U S A 103:11719–11723PubMedCentralPubMedCrossRefGoogle Scholar
  63. Klibanov AL (2007) Ultrasound molecular imaging with targeted microbubble contrast agents. J Nucl Cardiol 14:876–884PubMedCrossRefGoogle Scholar
  64. Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT (2010) Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: A tool for targeted drug delivery. J Control Release 148(1):13PubMedCentralPubMedCrossRefGoogle Scholar
  65. Kokhuis TJ, Garbin V, Kooiman K, Naaijkens BA, Juffermans LJ, Kamp O, van der Steen AF, Versluis M, de Jong N (2013) Secondary bjerknes forces deform targeted microbubbles. Ultrasound Med Biol 39:490–506PubMedCrossRefGoogle Scholar
  66. Kong G, Dewhirst MW (1999) Hyperthermia and liposomes. Int J Hyperthermia 15:345–370PubMedCrossRefGoogle Scholar
  67. Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, Dewhirst MW (2000a) Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res 60:6950–6957PubMedGoogle Scholar
  68. Kong G, Braun RD, Dewhirst MW (2000b) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60:4440–4445PubMedGoogle Scholar
  69. Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027–3032PubMedGoogle Scholar
  70. Kooiman K, Vos HJ, Versluis M, de Jong N (2014) Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 72C:28–48CrossRefGoogle Scholar
  71. Kripfgans OD, Fowlkes JB, Miller DL, Eldevik OP, Carson PL (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26:1177–1189PubMedCrossRefGoogle Scholar
  72. Kripfgans OD, Fowlkes JB, Woydt M, Eldevik OP, Carson PL (2002) In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans Ultrason Ferroelectr Freq Control 49:726–738PubMedCrossRefGoogle Scholar
  73. Kripfgans OD, Fabiilli ML, Carson PL, Fowlkes JB (2004) On the acoustic vaporization of micrometer-sized droplets. J Acoust Soc Am 116:272–281PubMedCrossRefGoogle Scholar
  74. Kripfgans OD, Orifici CM, Carson PL, Ives KA, Eldevik OP, Fowlkes JB (2005) Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study. IEEE Trans Ultrason Ferroelectr Freq Control 52:1101–1110PubMedCrossRefGoogle Scholar
  75. Krupka T, Dremann D, Exner A (2009) Time and dose dependence of pluronic bioactivity in hyperthermia-induced tumor cell death. Exp Biol Med (Maywood) 234:95–104CrossRefGoogle Scholar
  76. Laing ST, Moody M, Smulevitz B, Kim H, Kee P, Huang S, Holland CK, McPherson DD (2011) Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model–brief report. Arterioscler Thromb Vasc Biol 31:1357–1359PubMedCentralPubMedCrossRefGoogle Scholar
  77. Lo AH, Kripfgans OD, Carson PL, Fowlkes JB (2006) Spatial control of gas bubbles and their effects on acoustic fields. Ultrasound Med Biol 32:95–106PubMedCrossRefGoogle Scholar
  78. Lo AH, Kripfgans OD, Carson PL, Rothman ED, Fowlkes JB (2007) Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent. IEEE Trans Ultrason Ferroelectr Freq Control 54:933–946PubMedCrossRefGoogle Scholar
  79. Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr (2010) Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol 21:S192–S203PubMedCentralPubMedCrossRefGoogle Scholar
  80. Lum AF, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW (2006) Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111:128–134, Epub 2005 Dec 2027PubMedCentralPubMedCrossRefGoogle Scholar
  81. Manthe RL, Foy SP, Krishnamurthy N, Sharma B, Labhasetwar V (2010) Tumor ablation and nanotechnology. Mol Pharm 7:1880–1898PubMedCentralPubMedCrossRefGoogle Scholar
  82. Maresca D, Renaud G, van Soest G, Li X, Zhou Q, Shung KK, de Jong N, van der Steen AF (2013) Contrast-enhanced intravascular ultrasound pulse sequences for bandwidth-limited transducers. Ultrasound Med Biol 39:706–713PubMedCentralPubMedCrossRefGoogle Scholar
  83. Matsunaga TO, Sheeran PS, Luois S, Streeter JE, Mullin LB, Banerjee B, Dayton PA (2012) Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging. Theranostics 2:1185–1198PubMedCentralPubMedCrossRefGoogle Scholar
  84. Matula T, Guan J (2011) Using optical scattering to measure properties of ultrasound contrast agent shells. J Acoust Soc Am 129:1675CrossRefGoogle Scholar
  85. McDannold NJ, Vykhodtseva NI, Hynynen K (2006) Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 241:95–106PubMedCrossRefGoogle Scholar
  86. McDannold N, Vykhodtseva N, Hynynen K (2008) Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood–brain barrier disruption. Ultrasound Med Biol 34:930–937, Epub 2008 Feb 2021PubMedCentralPubMedCrossRefGoogle Scholar
  87. McWilliams JP, Lee EW, Yamamoto S, Loh CT, Kee ST (2010) Image-guided tumor ablation: emerging technologies and future directions. Semin Intervent Radiol 27:302–313PubMedCentralPubMedCrossRefGoogle Scholar
  88. Miller DL, Song J (2002) Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo. Ultrasound Med Biol 28:1343–1348PubMedCrossRefGoogle Scholar
  89. Miller MW, Miller DL, Brayman AA (1996) A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 22:1131–1154PubMedCrossRefGoogle Scholar
  90. Miller DL, Kripfgans OD, Fowlkes JB, Carson PL (2000) Cavitation nucleation agents for nonthermal ultrasound therapy. J Acoust Soc Am 107:3480–3486PubMedCrossRefGoogle Scholar
  91. Mohan P, Rapoport N (2010) Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm 7:1959–1973PubMedCentralPubMedCrossRefGoogle Scholar
  92. Nam KH, Christensen DA, Kennedy AM and Rapoport N (2009) Acoustic droplet vaporization, cavitation, and therapeutic properties of copolymer-stabilized perfluorocarbon nanoemulsions. Am Inst Phys Conf Proc 1113:124–128Google Scholar
  93. Needham D, Anyarambhatla G, Kong G, Dewhirst MW (2000) A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60:1197–1201PubMedGoogle Scholar
  94. Negussie AH, Yarmolenko PS, Partanen A, Ranjan A, Jacobs G, Woods D, Bryant H, Thomasson D, Dewhirst MW, Wood BJ, Dreher MR (2011) Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia 27:140–155PubMedCentralPubMedCrossRefGoogle Scholar
  95. Noth U, Morrissey SP, Deichmann R, Jung S, Adolf H, Haase A, Lutz J (1997) Perfluoro-15-crown-5-ether labelled macrophages in adoptive transfer experimental allergic encephalomyelitis. Artif Cells Blood Substit Immobil Biotechnol 25:243–254PubMedCrossRefGoogle Scholar
  96. O’Neill BE, Rapoport N (2011) Phase-shift, stimuli-responsive drug carriers for targeted delivery. Ther Deliv 2:1165–1187PubMedCentralPubMedCrossRefGoogle Scholar
  97. O’Neill BE, Vo H, Angstadt M, Li KP, Quinn T, Frenkel V (2009) Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle. Ultrasound Med Biol 35:416–424PubMedCentralPubMedCrossRefGoogle Scholar
  98. Poon RTP, Borys N (2009) Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother 10:333–343PubMedCrossRefGoogle Scholar
  99. Qin S, Caskey CF, Ferrara KW (2009) Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 54:R27–R57PubMedCentralPubMedCrossRefGoogle Scholar
  100. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990CrossRefGoogle Scholar
  101. Rapoport N (2012a) Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(5):492–510CrossRefGoogle Scholar
  102. Rapoport N (2012b) Ultrasound-mediated micellar drug delivery. Int J Hyperthermia 28:374–385PubMedCrossRefGoogle Scholar
  103. Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106PubMedCrossRefGoogle Scholar
  104. Rapoport NY, Efros AL, Christensen DA, Kennedy AM, Nam KH (2009a) Microbubble generation in phase-shift nanoemulsions used as anticancer drug carriers. Bubble Sci Eng Technol 1:31–39PubMedCentralPubMedCrossRefGoogle Scholar
  105. Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam K-H (2009b) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276PubMedCentralPubMedCrossRefGoogle Scholar
  106. Rapoport N, Christensen DA, Kennedy AM, Nam KH (2010a) Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers. Ultrasound Med Biol 36:419–429PubMedCentralPubMedCrossRefGoogle Scholar
  107. Rapoport N, Kennedy AM, Shea JE, Scaife CL, Nam KH (2010b) Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging. Mol Pharm 7:22–31PubMedCentralPubMedCrossRefGoogle Scholar
  108. Rapoport N, Nam K-H, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Kennedy AM, Parker DL, Jeong E-K (2011) Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 153:4–15PubMedCentralPubMedCrossRefGoogle Scholar
  109. Rapoport N, Payne A, Dillon C, Shea J, Scaife C, Gupta R (2013) Focused ultrasound-mediated drug delivery to pancreatic cancer in a mouse model. J Ther Ultrasound 1Google Scholar
  110. Reznik N, Williams R, Burns PN (2011) Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent. Ultrasound Med Biol 37:1271–1279PubMedCrossRefGoogle Scholar
  111. Reznik N, Shpak O, Gelderblom EC, Williams R, de Jong N, Versluis M, Burns PN (2013) The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets. Ultrasonics 53:1368–1376PubMedCrossRefGoogle Scholar
  112. Reznik N, Lajoinie G, Shpak O, Gelderblom EC, Williams R, de Jong N, Versluis M, Burns PN (2014) On the acoustic properties of vaporized submicron perfluorocarbon droplets. Ultrasound Med Biol 40:1379–1384PubMedCrossRefGoogle Scholar
  113. Schad KC, Hynynen K (2010) In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy. Phys Med Biol 55:4933–4947PubMedCrossRefGoogle Scholar
  114. Schroeder A, Avnir Y, Weisman S, Najajreh Y, Gabizon A, Talmon Y, Kost J, Barenholz Y (2007) Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir 23:4019–4025PubMedCrossRefGoogle Scholar
  115. Schroeder A, Honen R, Turjeman K, Gabizon A, Kost J, Barenholz Y (2009) Ultrasound triggered release of cisplatin from liposomes in murine tumors. J Control Release 137(1):63–68PubMedCrossRefGoogle Scholar
  116. Segers T, Versluis M (2014) Acoustic bubble sorting for ultrasound contrast agent enrichment. Lab Chip 14:1705–1714PubMedCrossRefGoogle Scholar
  117. Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK (2009) Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 124:306–310PubMedCentralPubMedCrossRefGoogle Scholar
  118. Shea JE, Nam KH, Rapoport N, Scaife CL (2011) Genexol inhibits primary tumour growth and metastases in gemcitabine-resistant pancreatic ductal adenocarcinoma. HPB (Oxford) 13:153–157CrossRefGoogle Scholar
  119. Sheeran PS, Luois S, Dayton PA, Matsunaga TO (2011) Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir 27:10412–10420PubMedCentralPubMedCrossRefGoogle Scholar
  120. Shortencarier MJ, Dayton PA, Bloch SH, Schumann PA, Matsunaga TO, Ferrara KW (2004) A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE Trans Ultrason Ferroelectr Freq Control 51:822–831PubMedCrossRefGoogle Scholar
  121. Shpak O, Kokhuis TJ, Luan Y, Lohse D, de Jong N, Fowlkes B, Fabiilli M, Versluis M (2013) Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. J Acoust Soc Am 134:1610–1621PubMedCrossRefGoogle Scholar
  122. Shpak O, Verweij M, Vos HJ, de Jong N, Lohse D, Versluis M (2014) Acoustic droplet vaporization is initiated by superharmonic focusing. Proc Natl Acad Sci U S A 111:1697–1702PubMedCentralPubMedCrossRefGoogle Scholar
  123. Smith DA, Vaidya SS, Kopechek JA, Huang SL, Klegerman ME, McPherson DD, Holland CK (2010) Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol 36:145–157PubMedCentralPubMedCrossRefGoogle Scholar
  124. Soman NR, Marsh JN, Hughes MS, Lanza GM, Wickline SA (2006) Acoustic activation of targeted liquid perfluorocarbon nanoparticles does not compromise endothelial integrity. IEEE Trans Nanobioscience 5:69–75PubMedCrossRefGoogle Scholar
  125. Soman NR, Baldwin SL, Hu G, Marsh JN, Lanza GM, Heuser JE, Arbeit JM, Wickline SA, Schlesinger PH (2009) Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 119:2830–2842PubMedCentralPubMedCrossRefGoogle Scholar
  126. Staruch R, Chopra R, Hynynen K (2011) Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperthermia 27:156–171PubMedCrossRefGoogle Scholar
  127. Stieger SM, Caskey CF, Adamson RH, Qin S, Curry FR, Wisner ER, Ferrara KW (2007) Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model. Radiology 243:112–121PubMedCrossRefGoogle Scholar
  128. Stone MJ, Frenkel V, Dromi S, Thomas P, Lewis RP, Li KC, Horne M 3rd, Wood BJ (2007) Pulsed-high intensity focused ultrasound enhanced tPA mediated thrombolysis in a novel in vivo clot model, a pilot study. Thromb Res 121:193–202PubMedCentralPubMedCrossRefGoogle Scholar
  129. Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK (2013a) Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 10:573–592PubMedCentralPubMedCrossRefGoogle Scholar
  130. Sutton JT, Ivancevich NM, Perrin SR Jr, Vela DC, Holland CK (2013b) Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model. Ultrasound Med Biol 39:813–824PubMedCentralPubMedCrossRefGoogle Scholar
  131. Tartis MS, McCallan J, Lum AF, LaBell R, Stieger SM, Matsunaga TO, Ferrara KW (2006) Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med Biol 32:1771–1780PubMedCrossRefGoogle Scholar
  132. Ten Kate GL, van den Oord SC, Sijbrands EJ, van der Lugt A, de Jong N, Bosch JG, van der Steen AF, Schinkel AF (2013) Current status and future developments of contrast-enhanced ultrasound of carotid atherosclerosis. J Vasc Surg 57:539–546PubMedCrossRefGoogle Scholar
  133. Thakkar D, Gupta R, Monson K, Rapoport N (2013) Effect of ultrasound on the permeability of vascular wall to nano-emulsion droplets. Ultrasound Med Biol 39:1804–1811PubMedCentralPubMedCrossRefGoogle Scholar
  134. Thomas DH, Sboros V, Emmer M, Vos H, de Jong N (2013) Microbubble oscillations in capillary tubes. IEEE Trans Ultrason Ferroelectr Freq Control 60:105–114PubMedCrossRefGoogle Scholar
  135. Tran TD, Caruthers SD, Hughes M, Marsh JN, Cyrus T, Winter PM, Neubauer AM, Wickline SA, Lanza GM (2007) Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int J Nanomedicine 2:515–526PubMedCentralPubMedGoogle Scholar
  136. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907PubMedCrossRefGoogle Scholar
  137. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 56:1291–1314PubMedCrossRefGoogle Scholar
  138. Vujaskovic Z, Kim DW, Jones E, Lan L, McCall L, Dewhirst MW, Craciunescu O, Stauffer P, Liotcheva V, Betof A, Blackwell K (2010) A phase I/II study of neoadjuvant liposomal doxorubicin, paclitaxel, and hyperthermia in locally advanced breast cancer. Int J Hyperthermia 26:514–521PubMedCentralPubMedCrossRefGoogle Scholar
  139. Vykhodtseva N, McDannold N, Hynynen K (2006) Induction of apoptosis in vivo in the rabbit brain with focused ultrasound and optison. Ultrasound Med Biol 32:1923–1929PubMedCrossRefGoogle Scholar
  140. Vykhodtseva N, McDannold N, Hynynen K (2008) Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics 48:279–296, Epub 2008 Apr 2014PubMedCentralPubMedCrossRefGoogle Scholar
  141. Wheatley MA, Forsberg F, Oum K, Ro R, El-Sherif D (2006) Comparison of in vitro and in vivo acoustic response of a novel 50:50 PLGA contrast agent. Ultrasonics 44:360–367PubMedCrossRefGoogle Scholar
  142. Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM (2007) Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging 25:667–680PubMedCrossRefGoogle Scholar
  143. Wilson K, Homan K, Emelianov S (2012) Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 3:618PubMedCrossRefGoogle Scholar
  144. Winter PM, Cai K, Caruthers SD, Wickline SA, Lanza GM (2007) Emerging nanomedicine opportunities with perfluorocarbon nanoparticles. Expert Rev Med Devices 4:137–145PubMedCrossRefGoogle Scholar
  145. Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM (2008) Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging 1:624–634PubMedCentralPubMedCrossRefGoogle Scholar
  146. Wong Z, Krifgans O, Qamar A, Fowlkes J, Bull J (2011) Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging. Soft Matter 7:4009–4016CrossRefGoogle Scholar
  147. Yarmolenko PS, Zhao Y, Landon C, Spasojevic I, Yuan F, Needham D, Viglianti BL, Dewhirst MW (2010) Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia 26:485–498PubMedCentralPubMedCrossRefGoogle Scholar
  148. Yu JX, Kodibagkar VD, Cui W, Mason RP (2005) 19 F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12:819–848PubMedCrossRefGoogle Scholar
  149. Yuh EL, Shulman SG, Mehta SA, Xie J, Chen L, Frenkel V, Bednarski MD, Li KC (2005) Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model. Radiology 234:431–437PubMedCrossRefGoogle Scholar
  150. Zhang M, Fabiilli ML, Haworth KJ, Fowlkes JB, Kripfgans OD, Roberts WW, Ives KA, Carson PL (2010) Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol 36:1691–1703PubMedCentralPubMedCrossRefGoogle Scholar
  151. Zheng H, Kruse DE, Stephens DN, Ferrara KW, Sutcliffe P, Gardner E (2008) A sensitive ultrasonic imaging method for targeted contrast microbubble detection. Conf Proc IEEE Eng Med Biol Soc 2008:5290–5293PubMedGoogle Scholar
  152. Zhou HF, Chan HW, Wickline SA, Lanza GM, Pham CT (2009) Alphavbeta3-targeted nanotherapy suppresses inflammatory arthritis in mice. FASEB J 23:2978–2985PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations