Skip to main content

Breeding Crop Plants for Improved Human Nutrition Through Biofortification: Progress and Prospects

  • Chapter

Abstract

Micronutrients are essential minerals and vitamins required by humans in tiny amounts which play a vital role in human health and development. Over three billion people in the world are malnourished, particularly in the developing countries. Current food systems cannot provide sufficiently balanced micronutrients required to meet daily needs and to sustain the wellbeing of people in developing countries. Heavy and monotonous consumption of cereal-based foods which contain limited amounts of micronutrients is one of the major reasons for the significantly high prevalence of micronutrient deficiencies in many of the developing countries. The development of crops with enhanced micronutrient concentration is one of the most sustainable and cost-effective approaches to alleviate micronutrient malnutrition globally. In this chapter we focus on the research to improve mineral element concentration in crops through plant breeding strategies, especially in major cereal crops and a legume which are most widely cultivated and preferred in Africa and Asia. Biofortification is an appropriate strategy to increase the bioavailable concentrations of an element in edible portions of crop plants through traditional breeding practices or modern biotechnology to overcome the problem of micronutrient deficiencies. Therefore, conventional breeding with modern genetic engineering approaches are important for developing crop cultivars with enhanced micronutrient concentrations to improve human health. This chapter reports on biofortification research on rice, pearl millet, sorghum, maize, wheat and common bean.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abebe Y, Bogale A, Hambidge KM et al (2007) Phytate, zinc, iron and calcium content of selected raw and prepared foods consumed in rural Sidama, southern Ethiopia, and implications for bioavailability. J Food Comput Anal 20:161–168. http://dx.doi.org/10.1016/j.jfca.2006.09.003

    Google Scholar 

  • Adoption Nutrition, the go-to nutrition & feeding resource for adoptive & foster families. http://adoptionnutrition.org/what-every-parent-needs-to-know/contributing-factors-to-malnutrition/#sthash.SnYYaem4.dpuf. Accessed 27 Mar 2015

  • Agrawal PK, Jaiswal SK, Prasanna BM et al (2012) Genetic variability and stability for kernel iron and zinc concentration in maize (Zea mays L.) genotypes. Indian J Genet 72:421–428

    CAS  Google Scholar 

  • Anand D, Prabhu KV, Singh AK (2012) Analysis of molecular diversity and fingerprinting of commercially grown Indian rice hybrids. J Plant Biochem Biotech 21:173–179

    Article  CAS  Google Scholar 

  • Andrews DJ, Kumar KA (1992) Pearl millet for food, feed and forage. Adv Agron 48:89–139

    Article  CAS  Google Scholar 

  • Anonymous (2002) Annual report for 2001. IRRI, Los Baños. pp 80–98

    Google Scholar 

  • Anonymous (2004) Annual report for 2003. IRRI, Los Baños. pp 81–87

    Google Scholar 

  • Anuradha K, Agarwal S, Batchu AK et al (2012) Evaluating rice germplasm for iron and zinc concentration in brown rice and seed dimensions. J Phytol 4(1):19–25

    CAS  Google Scholar 

  • Asad A, Rafique R (2000) Effect of zinc, copper, iron, manganese and boron on the yield and yield components of wheat crop in Tehsil Peshawar. J Pak Biol Sci 3:1615–1620

    Article  Google Scholar 

  • Ashok Kumar A, Reddy BVS, Ramaiah B et al (2009) Genetic variability and plant character association of grain Fe and Zn in selected core collections of sorghum germplasm and breeding lines. J SAT Agric Res 7. (ejournal.icrisat.org)

    Google Scholar 

  • Ashok Kumar A, Reddy BVS, Ramaiah B (2012) Database for grain Fe and Zn in sorghum – a proposal. J SAT Agric Res 10:1–7. http://ejournal.icrisat.org/Volume10/Sorghum_Millets/Databse.pdf

  • Ashok Kumar A, Reddy BVS, Ramaiah B et al (2013) Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]. Field Crop Res 146:86–95. doi:10.1016/j.fcr.2013.03.001

    Article  Google Scholar 

  • Aung MS, Masuda H, Kobayashi T et al (2013) Iron biofortification of Myanmar rice. Front Plant Sci 4:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Badakhshan H, Moradi N, Mohammadzadeh H et al (2013) Genetic variability analysis of grains Fe, Zn and Beta-carotene concentration of prevalent wheat varieties in Iran. Int J Agric Crop Sci 6(2):57–62

    CAS  Google Scholar 

  • Banerjee S, Sharma DJ, Verulkar SB et al (2010) Use of in silico and semi quantitative RT-PCR approaches to develop nutrient rich rice (Oryza sativa L.). Indian J Biotech 9(2):203–212

    Google Scholar 

  • Banziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant-breeding. Food Nutr Bull 2:397–400

    Article  Google Scholar 

  • Bashir K, Takahashi R, Akhtar S et al (2013) The knockdown of OsVIT2 and MIT2 affects iron localization in rice seed. Rice 6:31

    Article  PubMed  Google Scholar 

  • Bashir EMA, Ali AM, Melchinger AE et al (2014) Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional value. Plant Genet Res 12:35–47. doi:10.1017/S1479262113000233

    Article  CAS  Google Scholar 

  • Beebe S, Gonzalez A, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Article  Google Scholar 

  • Black RE, Allen LH, Bhutta ZA et al (2008) Maternal and child under nutrition study group, maternal and child under nutrition: global and regional exposures and health consequences. Lancet 371(9608):243–260

    Article  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Grusak M et al (2009) Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207

    Article  CAS  Google Scholar 

  • Boccio JR, Iyengar V (2003) Iron deficiency: causes, consequences, and strategies to overcome this nutritional problem. Biol Trace Elem Res 94:1–32

    Article  CAS  PubMed  Google Scholar 

  • Borg S, Brinch PH, Tauris B et al (2009) Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil 325:15–24

    Article  CAS  Google Scholar 

  • Bouis HE (1999) Economics of enhanced micronutrient density in food staples. Field Crop Res 60:165–173

    Article  Google Scholar 

  • Bouis HE (2000) Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition 16(7/8):701–704

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Sci 62:403–411

    Article  Google Scholar 

  • Bouis HE (2007) The potential of genetically modified food crops to improve human nutrition in developing countries. J Dev Stud 43(1):79–96

    Article  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification – a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50(2):S1–S13

    Google Scholar 

  • Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(Suppl 1):31S–40S

    Article  Google Scholar 

  • Branca F, Ferrari M (2002) Impact of micronutrient deficiencies on growth: the stunting syndrome. Ann Nutr Metab 46:8–17

    Article  CAS  PubMed  Google Scholar 

  • Brar B, Jain S, Singh R et al (2011) Genetic diversity for iron and zinc contents in a collection of 220 rice (Oryza sativa L.) genotypes. Indian J Genet 71(1):67–73

    Google Scholar 

  • Brinch-Pedersen H, Borg S, Tauris B et al (2007) Molecular genetics approaches to increasing mineral availability and vitamin content of cereals. J Cereal Sci 46:308–326

    Article  CAS  Google Scholar 

  • Bueno L, Pizzo JC, Freitas O et al (2013) Bioavailability of iron measurement in two nutrients multiple solutions by in vitro and in vivo; a comparative methodology between methods. Nutr Hosp 28(1):93–99

    CAS  PubMed  Google Scholar 

  • Burger A, Høgh-Jensen H, Gondah J et al (2014) Micronutrient density and stability in West African pearl millet – potential for biofortification. Crop Sci 54:1709–1720

    Article  CAS  Google Scholar 

  • Caballero B (2002) Global patterns of child health: the role of nutrition. Ann Nutr Metab 46(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y et al (2010) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    Article  CAS  PubMed  Google Scholar 

  • Cercamondi CI, Egli IM, Mitchikpe E et al (2013) Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. J Nutr 143:1376–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborti M, Hossain F, Kumar R et al (2009) Genetic evaluation of grain yield and kernel micronutrients traits in maize. Pusa Agri Sci 32:11–16

    Google Scholar 

  • Chakraborti M, Prasanna BM, Singh AM et al (2010) Generation mean analysis of kernel iron and zinc concentrations in maize (Zea mays). Indian J Agric Sci 80:956–959

    Google Scholar 

  • Chandel G, Banerjee S, See S et al (2010) Effect of different nitrogen fertilizer levels and native soil properties on rice grain fe, zn and protein contents. Rice Sci 17(3):213–227

    Article  Google Scholar 

  • Chatzav M, Peleg Z, Ozturk L (2010) Genetic diversity of grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105(7):1211–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cichy KA, Forster S, Grafton KF et al (2005) Inheritance of seed zinc accumulation in navy bean. Crop Sci 45:864–870

    Article  CAS  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Collins VP, Cantor AH, Pescatore AJ et al (1997) Pearl millet in layer diets enhances egg yolk n-3 fatty acids. Poult Sci 76:326–330

    Article  CAS  PubMed  Google Scholar 

  • Combs GF Jr, Welch RM (1998) Creating healthful food systems: linking agriculture to human needs. Cornell International Institute for Food, Agriculture and Development, Ithaca

    Google Scholar 

  • Combs GF Jr, Welch RM, Duxbury JM et al (1996) Food based approaches to preventing micronutrient malnutrition: an international research agenda. Cornell International Institute for Food, Agriculture, and Development, Cornell University, Ithaca

    Google Scholar 

  • Dahlberg JA, Wilson JP, Snyder T (2004) Sorghum and pearl millet: health foods and industrial products in developed countries. In: Alternative uses of sorghum and pearl millet in Asia: proceedings of the expert meeting, ICRISAT, Patancheru, Andhra Pradesh, India, 1–4 July 2003. CFC Tech Paper 34. pp 42–59

    Google Scholar 

  • Datta SK, Datta K, Parkhi V et al (2007) Golden Rice: introgression, breeding, and field evaluation. Euphytica 154(3):271–278. doi:10.1007/s10681-006-9311-4

    Article  Google Scholar 

  • Elad T, Spenser MR, Jessica B et al (2015) Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Nutr J 14:11

    Article  CAS  Google Scholar 

  • Eliades M, Spyrou E, Agrawal N et al (2013) Meta-analysis: vitamin D and non-alcoholic fatty liver disease. Aliment Pharmacol Ther 38(3):246–254. doi:10.1111/apt.12377

    Article  CAS  PubMed  Google Scholar 

  • Fairweather TS, Prentice A, Heumann KG et al (1995) Effect of calcium supplements and stage of lactation on the calcium absorption efficiency of lactating women accustomed to low calcium intakes. Am J Clin Nutr 62:1188–1192

    Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman Group Lt, London

    Google Scholar 

  • FAO (1998) Food and Agricultural Organization, FAOSTAT Agriculture Data. Rome

    Google Scholar 

  • FAO (1999) Food and Agricultural Organization, FAOSTAT Agriculture Data. Rome

    Google Scholar 

  • FAO/WHO (2000) Preliminary report on recommended nutrient intakes. Joint FAO/WHO expert consultation on human vitamin and mineral requirements. FAO, Bangkok, September 21–30, 1998, revised July 13, 2000

    Google Scholar 

  • FAO (2003) The state of food insecurity in the world. Food and Agricultural Organization of the United Nations, Rome/Geneva

    Google Scholar 

  • Farooq S, Azam F (2002) Molecular markers in plant breeding: concepts and characterization. Pak J Biol Sci 5:1135–1140

    Article  Google Scholar 

  • Feila S, Mosera B, Jampatongb S et al (2005) Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci 45:516–523

    Article  Google Scholar 

  • Ficco DB, Riefolo M, Nicastro C et al (2009) Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crop Res 111:235–242

    Article  Google Scholar 

  • Gangashetty PI, Salimath PM, Hanamaratti NG (2013) Genetic variability studies in genetically diverse non-basmati local aromatic genotypes of rice (Oryza Sativa (L.). Rice Genomics Genet 4(24):31–37

    Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu T et al (2009) Genetic identification of quantitative trait loci for contents of mineral nutrient in rice grain. J Integr Plant Biol 51:84–92

    Article  CAS  PubMed  Google Scholar 

  • GBD (2013) Mortality and causes of death, collaborators (17 December 2014). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:117–171. doi:10.1016/S0140-6736(14)61682-2

    Google Scholar 

  • Gelin JR, Forster S, Grafton KF et al (2007) Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci 47:1361–1366

    Article  CAS  Google Scholar 

  • Genc Y, Humphries JM, Lyons GH (2005) Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations. J Trace Elem Med Biol 18:319–324

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Verbyla A, Torun A et al (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 314:49–66

    Article  CAS  Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Phys Plant 126:407–417

    Article  CAS  Google Scholar 

  • Gibson RS, Donavan UM, Heath MAL et al (1994) Dietary strategies to improve the iron and zinc nutriture of young women following a vegetarian diet. Plant Foods Hum Nutr 51:1–16

    Article  Google Scholar 

  • Golden MHN (1991) The nature of nutritional deficiency in relation to growth failure and poverty. Acta Paediatr Scand 374:95–110

    Article  CAS  Google Scholar 

  • Gomez BHF, Yazici A, Ozturk L et al (2010) Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171:39–52

    Article  CAS  Google Scholar 

  • Gómez-Galera S, Rojas E, Sudhakar D et al (2010) Critical evaluation of strategies for mineral fortification of staple crops. Transgenic Res 19:165–180

    Article  PubMed  CAS  Google Scholar 

  • Gordon N (1997) Nutrition and cognitive function. Brain Dev 19:165–170

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  • Govindaraj M, Selvi B, Rajarathinam S (2009) Correlation studies for grain yield components and nutritional quality traits in pearl millet (Pennisetum glaucum (L.) R. Br.) germplasm. World J Agric Sci 5:686–689

    CAS  Google Scholar 

  • Govindaraj M, Selvi M, Rajarathinam S et al (2011) Genetic variability, heritability and genetic advance in India’s pearl millet (Pennisetum glaucum (L) R. Br.) accessions for yield and nutritional quality traits. AJFAND 11(3):4758–4771. http://www.ajfand.net/Volume11/No3/index3.html

  • Govindaraj M, Rai KN, Shanmugasundaram P (2013) Combining ability and heterosis for grain iron and zinc density in pearl millet. Crop Sci 53:507–517

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM (1996) Breeding for staple-food crops with high micronutrient density. Agricultural strategies for micronutrients. Working paper 3. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Graham RD, Senadhira D, Beebe S et al (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80

    Article  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Graham RD, Welch RM, Saunders DA (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Grantham-McGregor SM, Ani CC (1999) The role of micronutrients in psychomotor sad cognitive development. Br Med Bull 55:511–527

    Article  CAS  PubMed  Google Scholar 

  • Greger JL (1992) Using animals to assess bioavailability of minerals: implications for human nutrition. J Nutr 122:2047–2052

    CAS  PubMed  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H et al (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Article  Google Scholar 

  • Grusak MA, Cakmak I (2004) Methods to improve the crop-delivery of minerals to humans and livestock. In: Plant nutritional genomics (Biological sciences). Blackwell, Oxford, pp 265–286

    Google Scholar 

  • Gupta SK, Velu G, Rai KN et al (2009) Association of grain iron and zinc content with grain yield and other traits in pearl millet (Pennisetum glaucum (L.) R. BR). Crop Improv 36(2):4–7

    Google Scholar 

  • Gupta SK, Rai KN, Singh P et al (2015) Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L. (R.) Br.). Field Crops Res 171:41–53

    Article  Google Scholar 

  • Hambidge KM, Huffer JW, Raboy V et al (2004) Zinc absorption from low-phytate hybrids of maize and their wild-type isohybrids. Am J Clin Nutr 79:1053–1059

    CAS  PubMed  Google Scholar 

  • Hambidge MK, Miller LV, Westcott JE et al (2010) Zinc bioavailability and homeostasis. Am J Clin Nutr 91(5):1478S–1483S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao HL, Wei YZ, Yang XE et al (2007) Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa). Rice Sci 14:289–294

    Article  Google Scholar 

  • Haslam N, Probert CS (1998) An audit of the investigation and treatment of folate deficiency. J R Soc Med 91(2):72–73. PMC 1296488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann W (2011) Vitamins in the prevention of human diseases. Walter de Gruyter, Berlin, p 245. ISBN 9783110214482

    Google Scholar 

  • House WA (1999) Trace element bioavailability as exemplified by iron and zinc. Field Crops Res 60:115–141. http://dx.doi.org/10.1016/j.fcr.2014.11.005

    Article  Google Scholar 

  • Huether S, McCance K et al (2004) Understanding pathophysiology, 3rd edn. Mosby, St. Louis, p 543. ISBN 0-323-02368-1

    Google Scholar 

  • Hunt A, Harrington D, Robinson S (2014) Vitamin B12 deficiency. BMJ Clin Res Ed 349:g5226. PMID 25189324

    Google Scholar 

  • ICMR (2009) Nutrient requirements and recommended dietary allowances for Indians: a report of the expert group of the Indian Council of Medical Research 2009. National Institute of Nutrition, Hyderabad

    Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K et al (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan R, Subramanian V (1988) Grain quality and utilization in sorghum and pearl millet. In: de Wet JMJ, Preston TA (eds) Biotechnology in tropical crop improvement. ICRISAT, Patancheru, pp 133–139

    Google Scholar 

  • Jin T, Zhou J, Chen J (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL et al (2011) Constitutive overexpression of the OsNAS gene family reveals single gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatti A, Rai K, Radhika K et al (2014) Grain iron and zinc density in pearl millet: combining ability, heterosis and association with grain yield and grain size. Springer Plus 3:763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khodadadi M, Dehghani H, Fotokian MH (2014) Genetic diversity of wheat grain quality and determination the best clustering technique and data type for diversity assessment. Genetika 46(3):763–774

    Article  Google Scholar 

  • Kim ES, Noh SK, Koo SI (1998) Marginal zinc deficiency lowers the lymphatic absorption of α-tocopherol in rats. J Nutr 128:265–270

    CAS  PubMed  Google Scholar 

  • Kodkany BS, Bellad RM, Mahantshetti NS (2013) Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J Nutr 143:1489–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger M, Schrödl W, Neuhaus J et al (2013) Field investigations of glyphosate in urine of Danish dairy cows. J Environ Anal Toxicol 3:186

    Google Scholar 

  • Lachner C, Steinle NI, Regenold WT (2012) The neuropsychiatry of vitamin B12 deficiency in elderly patients. J Neuropsychiatr Clin Neurosci 24(1):5–15. PMID 22450609

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Chiecko JC, Kim SA et al (2009a) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Phys 150:786–800

    Article  CAS  Google Scholar 

  • Lee S, Jeon US, Lee SJ et al (2009b) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106:22014–22019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Jeon US, Lee SJ (2009c) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci USA 6:22014–22019

    Google Scholar 

  • Lemke S (2005) Nutrition security, livelihoods and HIV/AIDS: implications for research among farm worker households in South Africa. Public Health Nutr 8:844–852

    Article  CAS  PubMed  Google Scholar 

  • Lestienne I, Icardnière C, Mouquet C et al (2005) Effect of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem 89(3):421–425

    Article  CAS  Google Scholar 

  • Li YC, Ledoux DR, Veum TL et al (2000) Effects of low phytic acid corn on phosphorus utilization, performance and bone mineralization in broiler chicks. Poult Sci 79:1444–1450

    Article  CAS  PubMed  Google Scholar 

  • Liu XH, Sun CQ, Wang XK (1995) Studies on the content of four elements Fe, Zn, Ca, and Se in rice varieties of China. Acta Agric Univ 21(3):138–142

    Google Scholar 

  • Liu ZH, Wang HY, Wang XE et al (2006) Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat (Triticum aestivum L.). J Cereal Sci 44(2):212–219. doi:10.1016/j.jcs.2006.06.001

    Article  CAS  Google Scholar 

  • Long JK, Banziger M, Smith ME (2004) Diallel analysis of grain iron and zinc density in southern African-adapted maize inbreds. Crop Sci 44:2019–2026

    Article  Google Scholar 

  • Lönnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:S1378–S1383

    Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 6:184–190

    Article  Google Scholar 

  • Lungaho MG, Mwaniki AM, Szalma SJ (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 6(6):e20429. doi:10.1371/journal.pone.0020429

    Article  CAS  Google Scholar 

  • Martinez MC, Dominguez PR, Moreno DA et al (2010) Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron Sustain Dev 30:295–309

    Article  CAS  Google Scholar 

  • Masuda H, Suzuki M, Morikawa KC et al (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108

    Article  Google Scholar 

  • Masuda H, Usuda K, Kobayashi T et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increase iron and zinc concentrations in rice grains. Rice 2:155–166

    Article  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS et al (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:534

    Google Scholar 

  • Masuda H, Kobayashi T, Ishimaru Y et al (2013) Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci 4:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Plant Biol 11:166–170

    CAS  Google Scholar 

  • McDonald GK, Gene Y, Graham RD (2008) A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant Soil 306:49–55

    Article  CAS  Google Scholar 

  • McGuire J (1993) Addressing micronutrient malnutrition. SCN News 9:1–10

    Google Scholar 

  • Meenakshi JV, Johnson NL, Manyong VM et al (2010) How cost effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev 38:64–75. doi:10.1016/J.WORLDDEV.2009.03.014

    Article  Google Scholar 

  • Menkir A (2008) Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem 110:454–464. http://dx.doi.org/10.1016/j.foodchem.2008.02.025

    Article  CAS  PubMed  Google Scholar 

  • Miller ER, Ullrey DE (1987) The pig as a model for human nutrition. Ann Rev Nutr 7:361–387

    Article  CAS  Google Scholar 

  • Moreno-Reyes R, Suetens C et al (1998) Kashin-Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status. N Engl J Med 339(16):1112–1120. doi:10.1056/NEJM1998 10153391604

    Article  CAS  PubMed  Google Scholar 

  • Morgounov A, Gomez BH, Abugalieva A (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Murtaza N, Kitaoka M, Ali GM (2005) Genetic differentiation of cotton cultivars by polyacrylamide gel electrophoresis. J Cent Eur Agric 6:69–76

    Google Scholar 

  • Neelamraju S, Mallikarjuna Swamy BP, Kaladhar K et al (2012) Increasing iron and zinc in rice grains using deep water rices and wild species – identifying genomic segments and candidate genes. Qual Assur Saf Crop Foods 4:138–138. doi:10.1111/j.1757-837X.2012.00142.x

    Article  Google Scholar 

  • Nestel P, Bouis H, Meenakshi JV et al (2006) Biofortification of staple food crops. J Nutr 36:1064–1067

    Google Scholar 

  • Nguni D, Geleta M, Johansson E et al (2011) Characterization of the Southern African sorghum varieties for mineral contents: prospects for breeding for grain mineral dense lines. African J Food Sci 5(7):436–445

    CAS  Google Scholar 

  • Ogo Y, Itai RN, Kobayashi T et al (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605

    Article  CAS  PubMed  Google Scholar 

  • Oikeh SO, Menkir A, Dixon BM et al (2003) Genotypic differences in concentration and bioavailabilty of kernel-iron in tropical maize varieties grown under field conditions. J Plant Nutr 26:2307–2019

    Article  CAS  Google Scholar 

  • Ortiz MI, Palacios RN, Meng E et al (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Article  CAS  Google Scholar 

  • Oury FX, Leenhardt F, Remesy C et al (2006) Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur J Agron 25:177–185

    Article  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S et al (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23(4):482–487. doi:10.1038/nbt1082

    Article  CAS  PubMed  Google Scholar 

  • Papp LV, Lu J et al (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7):775–806. doi:10.1089/ars.2007.1528

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy RP, Birthal PS, Reddy BVS (2006) Diagnostics of sorghum and pearl millet grains-based nutrition in India. Int Sorgh Millets Newsl 44:93–96

    Google Scholar 

  • Paul S, Ali N, Gayen D et al (2012) Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. GM Crops Food 3:310–316

    Article  PubMed  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A et al (2008) Grain zinc, iron and protein concentrations and zinc efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67

    Article  CAS  Google Scholar 

  • Peleg Z, Cakmack I, Ozturk L et al (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer W, McClafferty B (2007) Biofortification: breeding micronutrient-dense crops. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell Publishing, Ames, pp 61–91

    Chapter  Google Scholar 

  • Qaim M, Stein AJ, Meenakshi JV (2007) Economics of biofortification. Agric Econ 37(1):119–133

    Article  Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A et al (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233

    Article  CAS  Google Scholar 

  • Queiroz VAV, Paulo EOG, Luciano RQ (2011) Iron and zinc availability in maize lines. Ciêncas Tecnol Aliment Campinas 31(3):577–583

    Google Scholar 

  • Qui LC, Pan J, Dan BW (1995) The mineral nutrient component and characteristic of color and white brown rice. Chin J Rice Sci 7(2):95–100

    Google Scholar 

  • Rai KN, Govindaraj M, Rao AS (2012) Genetic enhancement of grain iron and zinc content in pearl millet. Qual Assur Saf Crop 4:119–125. doi:10.1111/j.1757-837X.2012.00135.x

    Article  CAS  Google Scholar 

  • Ramakrishnan U, Manjrekar R, Rivera J (1999) Micronutrients and pregnancy outcome: a review of the literature. Nutr Res 19:103–159

    Article  CAS  Google Scholar 

  • Rana MK, Bhat KV (2005) RAPD markers for genetic diversity study among Indian cotton cultivars. Curr Sci 88:1956–1961

    Google Scholar 

  • Rao CR (1952) Advanced statistical methods in biometrical research. Wiley, New York, pp 357–363

    Google Scholar 

  • Ravaglia G, Forti P, Maioli F et al (2000) Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged ≥90 y. Am J Clin Nutr 71(2):590–598

    CAS  PubMed  Google Scholar 

  • Rawat N, Tiwari VK, Singh N (2009) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Res Crop Evol 56:53–64

    Article  Google Scholar 

  • Reddy BVS, Ramesh S, Longvah T (2005) Prospects of breeding for micronutrients and carotene-dense sorghums. Int Sorgh Millets Newslet 46:10–14

    Google Scholar 

  • Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. Report, October 2009

    Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Saltzman A, Birol E, Bouis H (2013) Biofortification: progress toward a more nourishing future. Glob Food Secur 2(1):9–17

    Article  Google Scholar 

  • Sandberg AS, Andlid T (2002) Phytogenic and microbial phytases in human nutrition. J Nutr 37(7):823–833

    CAS  Google Scholar 

  • Sandstead HH (1994) Understanding zinc: recent observations and interpretations. J Lab Clin Med 124(3):322–327

    CAS  PubMed  Google Scholar 

  • Sanghvi TG (1996) Economic rationale for investing in micronutrient programs. A policy brief based on new analyses. Office of Nutrition, Bureau for Research and Development, United States Agency for International Development, Washington, DC, pp 1–12

    Google Scholar 

  • Schneeman BO (2001) Linking agricultural production and human nutrition. J Sci Food Agric 81:3–9

    Article  CAS  Google Scholar 

  • Sehgal S, Kawatra A, Singh G (2004) Recent advances in pearl millet and sorghum processing and food product development. In: Alternative uses of sorghum and pearl millet in Asia: proceedings of the expert meeting, ICRISAT, Patancheru, Andhra Pradesh, India, 1–4 July 2003. CFC Technical Paper No. 34. pp 60–92

    Google Scholar 

  • Shafii B, Price WJ (1998) Analysis of genotype-by-environment interaction using the additive main effects and multiplicative interaction model and stability estimates. J Agric Biol Environ Stat 3:335–345

    Article  Google Scholar 

  • Shaker M, Tabbaa A, Albedlawi M, Alkhouri N (2014) Liver transplantation for nonalcoholic fatty liver disease: new challenges and new opportunities. World J Gastroenterol 20(18):5320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi RL, Li HW, Tong YP et al (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306:95–104

    Article  CAS  Google Scholar 

  • Shivay YS, Kumar D, Prasad R (2008) Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice-wheat cropping system. Nutr Cycl Agroecosyst 81:229–243

    Article  CAS  Google Scholar 

  • Skalicky A, Meyers A, Adams W (2006) Child food insecurity and iron deficiency anemia in low-income infants and toddlers in the United States. Matern Child Health J 10(2):177–185

    Article  PubMed  Google Scholar 

  • Sommer A, Tarwotjo I, Djunaedi E et al (1986) Impact of vitamin A supplementation on childhood mortality. A randomized controlled community trial. Lancet 24:1169–1173

    Article  Google Scholar 

  • Stangoulis JCR, Huynh BL, Welch RM (2006) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294. doi:10.1007/s10681-006- 9211-7

    Article  Google Scholar 

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154

    Article  CAS  Google Scholar 

  • Stein AJ, Meenakshi JV, Qaim M (2005) Analyzing the health benefits of biofortified staple crops by means of the disability-adjusted life years approach: a handbook focusing on iron, zinc and vitamin A. HarvestPlus technical monograph 4. IFPRI/CIAT, Washington, DC

    Google Scholar 

  • Suwarto, Nasrullah (2011) Genotype × environment interaction for iron concentration of rice in Central Java of Indonesia. Rice Sci 18(1):75–78

    Article  Google Scholar 

  • Suzuki M, Morikawa KC, Nakanishi H et al (2008) Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr 54:77–85

    Article  CAS  Google Scholar 

  • Tako E, Reed SM, Budiman J et al (2015) Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Nutr J 14:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang G, Qin J, Dolnikowski GG et al (2009) Golden Rice is an effective source of vitamin A. Am J Clin Nutr 89(6):1776–1783. doi:10.3945/ajcn.2008.27119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G, Hu Y, Yin SA et al (2012) Beta carotene produced by Golden Rice is as good as beta carotene in oil at providing vitamin A to children. Am J Clin Nutr 96:3658–3664

    Article  CAS  Google Scholar 

  • Taylor PN, Okosieme OE, Dayan CM et al (2014) Therapy of endocrine disease: impact of iodine supplementation in mild-to-moderate iodine deficiency: systematic review and meta-analysis. Eur J Endocrinol 170(1):R1–R15. doi:10.1530/EJE-13-0651

    Article  CAS  PubMed  Google Scholar 

  • Timmer CP (2003) Biotechnology and food systems in developing countries. J Nutr 133:3319–3322

    CAS  PubMed  Google Scholar 

  • Underwood BA, Smitasiri S (1999) Micronutrient malnutrition: policies and programmes for control and their implications. Ann Rev Nutr 19:303–324

    Article  CAS  Google Scholar 

  • Van Campen DR, Glahn RP (1999) Micronutrient bioavailability techniques: accuracy, problems and limitations. Field Crops Res 60:93–113

    Article  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Velu G, Rai KN, Muralidharan V (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc contents. Plant Breed 126:182–185

    Article  CAS  Google Scholar 

  • Velu G, Rai KN, Sahrawat KL et al (2008) Variability for grain iron and zinc contents in pearl millet hybrids. J SAT Agric Res 6:1–4

    Google Scholar 

  • Velu G, Rai KN, Muralidharan V (2011) Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. Br). Euphytica 180:251–259

    Article  CAS  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J et al (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Res 137:261–267

    Article  Google Scholar 

  • Veum TL, Ledoux DR, Raboy V et al (2001) Low-phytic acid corn improves nutrient utilization for growing pigs. J Anim Sci 79:2873–2880

    CAS  PubMed  Google Scholar 

  • Vidal AJ, Butler CC, Cannings JR et al (2005) Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency. Cochrane Database Syst Rev 3:CD004655

    Google Scholar 

  • Vitali D, Dragojević VI, Marić K et al (2007) Integral wheat flour based biscuits as sources of phosphorus in everyday nutrition. Agric Conspec Sci 72(3):245–249

    Google Scholar 

  • Vogel KP, Mayland HF, Reece PE et al (1989) Genetic variability for mineral element concentration of crested wheat grass forages. Crop Sci 29:1146–1150

    Article  Google Scholar 

  • Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2163–2196. doi:10.1016/S0140-6736(12)61729-2

    Article  PubMed  Google Scholar 

  • Wang S, Yin L, Tanaka H et al (2011) Wheat- Aegilops chromosome addition lines showing high iron and zinc contents in grains. Breed Sci 61:189–195

    Article  CAS  Google Scholar 

  • Wei Y, Shohag MJI, Yang X et al (2012) Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. J Agric Food Chem 60:11433–11439

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crop Res 60:1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Weller JI, Kashi Y, Soller M (1990) Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci 73:2525–2537

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2005) Bio fortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. doi:10.1111/j.1469-8137.2008.02738.x

    Article  CAS  PubMed  Google Scholar 

  • WHO (2002) The World Health report 2002. Reducing risks, promoting healthy life

    Google Scholar 

  • WHO (2005) World Health report: make every mother and child count. World Health Organization, Geneva

    Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:1–14

    Article  CAS  Google Scholar 

  • Xia Y, Hill KE, Byrne DW et al (2005) Effectiveness of selenium supplements in a low-selenium area of China. Am J Clin Nutr 81(4):829–834

    CAS  PubMed  Google Scholar 

  • Xu Y, An D, Liu D et al (2012) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crops Res 138:57–62

    Article  Google Scholar 

  • Ye X, Al-Babili S, Klöti A et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305. doi:10.1126/science.287.5451.303

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu YH, Yi HY et al (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Su YH, Dunham SJ et al (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash I. Gangashetty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gangashetty, P.I., Motagi, B.N., Pavan, R., Roodagi, M.B. (2016). Breeding Crop Plants for Improved Human Nutrition Through Biofortification: Progress and Prospects. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_2

Download citation

Publish with us

Policies and ethics