Advertisement

Theoretical Studies and Algorithms Regarding the Solution of Non-invertible Nonlinear Source Separation

  • D. F. F. Baptista
  • R. A. AndoEmail author
  • L. T. Duarte
  • C. Jutten
  • R. Attux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9237)

Abstract

In this paper, we analyse and solve a source separation problem based on a mixing model that is nonlinear and non-invertible at the space of mixtures. The model is relevant considering it may represent the data obtained from ion-selective electrode arrays. We apply a new approach for solving the problems of local stability of the recurrent network previously used in the literature, which allows for a wider range of source concentration. In order to achieve this, we utilize a second-order recurrent network which can be shown to be locally stable for all solutions. Using this new network and the priors that chemical sources are continuous and smooth, our proposal performs better than the previous approach.

References

  1. 1.
    Ando, R.A.: Blind Source Separation in the Context of Polynomial Mixtures. Master’s thesis, School of Electrical and Computer Engeneering, University of Campinas (2013)Google Scholar
  2. 2.
    Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic press, USA (2010)Google Scholar
  3. 3.
    Duarte, L.T., Jutten, C.: Design of smart ion-selective electrode arrays based on source separation through nonlinear independent component analysis. Oil Gas Sci. Technol.-Rev. d’IFP Energies Nouvelles 69(2), 293–306 (2014)CrossRefGoogle Scholar
  4. 4.
    Hosseini, S., Deville, Y.: Blind separation of linear-quadratic mixtures of real sources using a recurrent structure. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 241–248. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  5. 5.
    Hyvärinen, A., Pajunen, P.: Nonlinear independent component analysis: existence and uniqueness results. Neural Netw. 12(3), 429–439 (1999)CrossRefGoogle Scholar
  6. 6.
    Jutten, C., Karhunen, J.: Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures. Int. J. Neural Syst. 14(05), 267–292 (2004)CrossRefGoogle Scholar
  7. 7.
    Taleb, A., Jutten, C.: Source separation in post-nonlinear mixtures. IEEE Trans. Sig. Process. 47(10), 2807–2820 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • D. F. F. Baptista
    • 1
  • R. A. Ando
    • 1
    • 2
    Email author
  • L. T. Duarte
    • 3
  • C. Jutten
    • 2
  • R. Attux
    • 1
  1. 1.School of Electrical and Computer EngineeringUNICAMPCampinasBrazil
  2. 2.GIPSA-LabUniversité Joseph Fourier (UJF)GrenobleFrance
  3. 3.School of Applied SciencesUNICAMPCampinasBrazil

Personalised recommendations