Advertisement

A Polynomial Formulation for Joint Decomposition of Symmetric Tensors of Different Orders

  • Pierre Comon
  • Yang Qi
  • Konstantin Usevich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9237)

Abstract

We consider two models: simultaneous CP decomposition of several symmetric tensors of different orders and decoupled representations of multivariate polynomial maps. We show that the two problems are related and propose a unified framework to study the rank properties of these models.

Keywords

Coupled CP decomposition Polynomial decoupling Generic rank X-rank 

References

  1. 1.
    Białynicki-Birula, A., Schinzel, A.: Representations of multivariate polynomials as sums of polynomials in linear forms. Colloq. Math. 112(2), 201–233 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Blekherman, G., Teitler, Z.: On maximum, typical and generic ranks. Math. Ann. 362(3–4), 1021–1031 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Catalano-Johnson, M.L.: The possible dimensions of the higher secant varieties. Am. J. Math. 118, 355–361 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Comon, P.: Contrasts, independent component analysis, and blind deconvolution. Int. J. Adapt. Control Sig. Proc. 18(3), 225–243 (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM. J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Comon, P., Jutten, C.: Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press (Elsevier), Oxford (2010)Google Scholar
  7. 7.
    Comon, P., Rajih, M.: Blind identification of under-determined mixtures based on the characteristic function. Sig. Process. 86(9), 3334–3338 (2006)zbMATHCrossRefGoogle Scholar
  8. 8.
    De Lathauwer, L., Comon, P., De Moor, B., Vandewalle, J.: ICA algorithms for 3 sources and 2 sensors. In: Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, 1999, pp. 111–120 (1999)Google Scholar
  9. 9.
    De Lathauwer, L.: Algebraic methods after prewhitening. In: Comon, P., Jutten, C. (eds.) Handbook of Blind Source Separation, Independent Component Analysis and Applications, p. 831. Academic Press (Elsevier), Oxford (2010) Google Scholar
  10. 10.
    De Poi, P.: On higher secant varieties of rational normal scrolls. Le Matematiche 51(1), 3–21 (1997)Google Scholar
  11. 11.
    Dreesen, P., Ishteva, M., Schoukens, J.: Decoupling multivariate polynomials using first-order information. SIAM. J. Matrix Anal. Appl. 36(2), 864–879 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Harris, J.: Algebraic Geometry: A First Course. Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar
  13. 13.
    Kibangou, A.Y., Favier, G.: Tensor analysis-based model structure determination and parameter estimation for block-oriented nonlinear systems. IEEE J. Sel. Topics Sig. Proc. 4(3), 514–525 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Milne, J.: Algebraic Geometry version 6.00, 24 August 2014. http://www.jmilne.org/math/CourseNotes/AG.pdf
  15. 15.
    Milnor, J., Stasheff, J.: Characteristic Classes. Annals of Mathematics Studies. Princeton University Press, Princeton (1974)zbMATHGoogle Scholar
  16. 16.
    Tiels, K., Schoukens, J.: From coupled to decoupled polynomial representations in parallel Wiener-Hammerstein models. In: 52nd IEEE Conference on Decision and Control, 10–13 December 2013, Florence, Italy, pp. 4937–4942 (2013)Google Scholar
  17. 17.
    Usevich, K.: Decomposing multivariate polynomials with structured low-rank matrix completion. In: 21st International Symposium on Mathematical Theory of Networks and Systems, 7–11 July 2014, Groningen, The Netherlands, pp. 1826–1833 (2014)Google Scholar
  18. 18.
    Van Mulders, A., Vanbeylen, L., Usevich, K.: Identification of a block-structured model with several sources of nonlinearity. In: Proceedings of the 14th European Control Conference (ECC 2014), pp. 1717–1722 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University Grenoble Alpes, GIPSA-LabGrenobleFrance
  2. 2.CNRSGIPSA-LabGrenobleFrance

Personalised recommendations