Block-Decoupling Multivariate Polynomials Using the Tensor Block-Term Decomposition

  • Philippe Dreesen
  • Thomas Goossens
  • Mariya Ishteva
  • Lieven De Lathauwer
  • Johan Schoukens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9237)


We present a tensor-based method to decompose a given set of multivariate functions into linear combinations of a set of multivariate functions of linear forms of the input variables. The method proceeds by forming a three-way array (tensor) by stacking Jacobian matrix evaluations of the function behind each other. It is shown that a block-term decomposition of this tensor provides the necessary information to block-decouple the given function into a set of functions with small input-output dimensionality. The method is validated on a numerical example.


Multivariate polynomials Multilinear algebra Tensor decomposition Block-term decomposition Waring decomposition 



This work was supported in part by the Fund for Scientific Research (FWO-Vlaanderen), by the Flemish Government (Methusalem), by the Belgian Government through the Inter-university Poles of Attraction (IAP VII) Program, by the ERC Advanced Grant SNLSID under contract 320378, by the ERC Advanced Grant BIOTENSORS under contract 339804, by the ERC Starting Grant SLRA under contract 258581, by the Research Council KU Leuven: CoE PFV/10/002 (OPTEC), by FWO projects G.0830.14N, G.0881.14N, and G.0280.15N and by the Belgian Federal Science Policy Office: IUAP P7/19 (DYSCO II, Dynamical systems, control and optimization, 2012–2017). Mariya Ishteva is an FWO Pegasus Marie Curie Fellow.


  1. 1.
    Carlini, E., Chipalkatti, J.: On Waring’s problem for several algebraic forms. Comment. Math. Helv. 78, 494–517 (2003)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Cichocki, A., Mandic, D.P., Phan, A.H., Caiafa, C.F., Zhou, G., Zhao, Q., De Lathauwer, L.: Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Sig. Process. Mag. 32(2), 145–163 (2015)CrossRefGoogle Scholar
  3. 3.
    De Lathauwer, L.: Decompositions of a higher-order tensor in block terms–Part I: Lemmas for partitioned matrices. SIAM J. Matrix Anal. Appl. 30, 1022–1032 (2008)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    De Lathauwer, L.: Decompositions of a higher-order tensor in block terms–Part II: Definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30, 1033–1066 (2008)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Dreesen, P., Ishteva, M., Schoukens, J.: Decoupling multivariate polynomials using first-order information and tensor decompositions. SIAM J. Matrix Anal. Appl. 36(2), 864–879 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  7. 7.
    Goossens, T.: Partial decoupling of multivariate polynomials in nonlinear system identification. Master’s thesis, KU Leuven (2015)Google Scholar
  8. 8.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Oeding, L., Ottaviani, G.: Eigenvectors of tensors and algorithms for Waring decomposition. J. Symb. Comp. 54, 9–35 (2013)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Sorber, L., Van Barel, M., De Lathauwer, L.: Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-\((L_r, L_r, 1)\) terms, and a new generalization. SIAM J. Optim. 23(2), 695–720 (2013)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab v2.0, January 2014. URL:
  12. 12.
    Tichavský, P., Phan, A.H., Cichocki, A.: Non-orthogonal tensor diagonalization, a tool for block tensor decompositions (2014). (preprint arXiv:1402.1673v2)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Philippe Dreesen
    • 1
  • Thomas Goossens
    • 1
    • 2
  • Mariya Ishteva
    • 1
  • Lieven De Lathauwer
    • 2
    • 3
  • Johan Schoukens
    • 1
  1. 1.Vrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.Department of Electrical Engineering (ESAT/STADIUS) and iMinds Medical ITKU LeuvenLeuvenBelgium
  3. 3.KU Leuven Campus KortrijkKortrijkBelgium

Personalised recommendations