Cooperative Diversity Under Spatial Interference Correlation in Wireless Networks

  • Ralph Tanbourgi
  • Holger Jäkel
  • Friedrich K. Jondral
Chapter

Abstract

Cooperative diversity is a promising technique to increase link reliability and coverage, however, its performance is affected by interference created by concurrently transmitting nodes over the same time-frequency resources. More specifically, interference is spatially correlated across cooperating nodes and this type of correlation may expunge the diversity gains known for the interference-free case. This chapter analyzes this effect using tools from stochastic geometry. First, the diversity order bottleneck for a simple three-node relaying system using selection decode-and-forward is identified and specific conditions under which the diversity order corresponding to the interference-free case can be recovered are found. Second, the concept of cooperative interference cancellation is proposed, which exploits the fact that interference is correlated across cooperative nodes. Possible deployment scenarios, the importance of the correlation of the interference signal, as well as remaining technical challenges are discussed. Finally, a first simulation-based analysis demonstrates that cooperative interference cancellation can increase throughput by around 25 % in a typical 4G network.

References

  1. 1.
    Altieri A, Vega LR, Piantanida P, Galarza CG (2014) Analysis of a cooperative strategy for a large decentralized wireless network. IEEE/ACM Trans Netw 22(4):1039–1051. doi:10.1109/TNET.2013.2269054 CrossRefGoogle Scholar
  2. 2.
    Andrews JG (2013) Seven ways that HetNets are a cellular paradigm shift. IEEE Commun Mag 51(3):136–144. doi:10.1109/MCOM.2013.6476878 CrossRefGoogle Scholar
  3. 3.
    Andrews JG, Weber S, Haenggi M (2007) Ad hoc networks: to spread or not to spread? IEEE Commun Mag 45(12):84–91. doi:10.1109/MCOM.2007.4395371 CrossRefGoogle Scholar
  4. 4.
    Andrews JG, Ganti RK, Haenggi M, Jindal N, Weber S (2010) A primer on spatial modeling and analysis in wireless networks. IEEE Commun Mag 48(11):156–163. doi:10.1109/MCOM.2010.5621983 CrossRefGoogle Scholar
  5. 5.
    Cover T, Gamal AE (1979) Capacity theorems for the relay channel. IEEE Trans Inf Theory 25(5):572–584. doi:10.1109/TIT.1979.1056084 CrossRefMATHGoogle Scholar
  6. 6.
    Crismani A, Toumpis S, Schilcher U, Brandner G, Bettstetter C (2014) Cooperative relaying under spatially and temporally correlated interference. IEEE Trans Veh Technol PP(99):1–1. doi:10.1109/TVT.2014.2372633
  7. 7.
    Dabora R, Maric I, Goldsmith A (2008) Interference forwarding in multiuser networks. In: IEEE global telecommunications conference (GLOBECOM), pp 1–5. doi:10.1109/GLOCOM.2008.ECP.192
  8. 8.
    Ganti RK, Haenggi M (2009) Spatial and temporal correlation of the interference in ALOHA ad hoc networks. IEEE Commun Lett 13(9):631–633. doi:10.1109/LCOMM.2009.090837 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Haenggi M (2005) On distances in uniformly random networks. IEEE Trans Inf Theory 51(10):3584–3586. doi:10.1109/TIT.2005.855610 CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Haenggi M (2012) Diversity loss due to interference correlation. IEEE Commun Lett 16(10):1600–1603CrossRefGoogle Scholar
  11. 11.
    Haenggi M, Ganti RK (2008) Interference in large wireless networks. Found Trends Netw 3(2):127–248. doi:10.1561/1300000015 CrossRefMATHGoogle Scholar
  12. 12.
    Haenggi M, Smarandache R (2013) Diversity polynomials for the analysis of temporal correlations in wireless networks. IEEE Trans Wirel Commun 12(11):5940–5951CrossRefGoogle Scholar
  13. 13.
    Haenggi M, Andrews JG, Baccelli F, Dousse O, Franceschetti M (2009) Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J Sel Areas Commun 27(7):1029–1046. doi:10.1109/JSAC.2009.090902 CrossRefGoogle Scholar
  14. 14.
    Hoymann C, Chen W, Montojo J, Golitschek A, Koutsimanis C, Shen X (2012) Relaying operation in 3GPP LTE: challenges and solutions. IEEE Commun Mag 50(2):156–162. doi:10.1109/MCOM.2012.6146495 CrossRefGoogle Scholar
  15. 15.
    Katz M, Shamai S (2006) Relaying protocols for two colocated users. IEEE Trans Inf Theory 52(6):2329–2344. doi:10.1109/TIT.2005.862090 CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Laneman JN, Tse D, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080. doi:10.1109/TIT.2004.838089 CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Lee D, Seo H, Clerckx B, Hardouin E, Mazzarese D, Nagata S, Sayana K (2012) Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and operational challenges. IEEE Commun Mag 50(2):148–155. doi:10.1109/MCOM.2012.6146494 CrossRefGoogle Scholar
  18. 18.
    Sawahashi M, Kishiyama Y, Morimoto A, Nishikawa D, Tanno M (2010) Coordinated multipoint transmission/reception techniques for LTE-advanced [coordinated and distributed MIMO]. IEEE Wirel Commun 17(3):26–34. doi:10.1109/MWC.2010.5490976 CrossRefGoogle Scholar
  19. 19.
    Schilcher U, Bettstetter C, Brandner G (2012) Temporal correlation of interference in wireless networks with Rayleigh block fading. IEEE Trans Mobile Comput 11(12):2109–2120. doi:10.1109/TMC.2011.244 CrossRefGoogle Scholar
  20. 20.
    Stoyan D, Kendall W, Mecke J (1995) Stochastic geometry and its applications, 2nd edn. WileyGoogle Scholar
  21. 21.
    Tanbourgi R, Jäkel H, Jondral FK (2013) Cooperative relaying in a Poisson field of interferers: a diversity order analysis. In: IEEE international symposium on information Theory, pp 3100–3104. doi:10.1109/ISIT.2013.6620796
  22. 22.
    Tanbourgi R, Dhillon HS, Andrews JG, Jondral FK (2014) Dual-branch MRC receivers under spatial interference correlation and Nakagami fading. IEEE Trans Commun 62(6):1830–1844. doi:10.1109/TCOMM.2014.2321553 CrossRefGoogle Scholar
  23. 23.
    Tanbourgi R, Dhillon HS, Andrews JG, Jondral FK (2014) Effect of spatial interference correlation on the performance of maximum ratio combining. IEEE Trans Wirel Commun 13(6):3307–3316. doi:10.1109/TWC.2014.041714.131330 CrossRefGoogle Scholar
  24. 24.
    Weber S, Yang X, Andrews JG, de Veciana G (2005) Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans Inf Theory 51(12):4091–4102. doi:10.1109/TIT.2005.858939 CrossRefMATHGoogle Scholar
  25. 25.
    Weber S, Andrews JG, Jindal N (2010) An overview of the transmission capacity of wireless networks. IEEE Trans Commun 58(12):3593–3604. doi:10.1109/TCOMM.2010.093010.090478 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ralph Tanbourgi
    • 1
  • Holger Jäkel
    • 1
  • Friedrich K. Jondral
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations