A Generic Approach to Self-localization and Mapping of Mobile Robots Without Using a Kinematic Model

  • Patrick Kesper
  • Lars Berscheid
  • Florentin Wörgötter
  • Poramate Manoonpong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9287)


In this paper a generic approach to the SLAM (Simultaneous Localization and Mapping) problem is proposed. The approach is based on a probabilistic SLAM algorithm and employs only two portable sensors, an inertial measurement unit (IMU) and a laser range finder (LRF) to estimate the state and environment of a robot. Scan-matching is applied to compensate for noisy IMU measurements. This approach does not require any robot-specific characteristics, e.g. wheel encoders or kinematic models. In principle, this minimal sensory setup can be mounted on different robot systems without major modifications to the underlying algorithms. The sensory setup with the probabilistic algorithm is tested in real-world experiments on two different kinds of robots: a simple two-wheeled robot and the six-legged hexapod AMOSII. The obtained results indicate a successful implementation of the approach and confirm its generic nature. On both robots, the SLAM problem can be solved with reasonable accuracy.


SLAM Mobile robots Hexapod robot Probabilistic robotics Laser range finder Inertial measurement unit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A.A., Raibert, M.: Autonomous navigation for bigdog. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4736–4741 (May 2010)Google Scholar
  2. 2.
    Burgard, W., Cremers, A.B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., Thrun, S.: Experiences with an interactive museum tour-guide robot. Artificial Intelligence 114(1–2), 3–55 (1999)CrossRefGoogle Scholar
  3. 3.
    Jones, J.L., Mack, N.E., Nugent, D.M., Sandin, P.E.: Autonomous floor-cleaning robot (August 27, 2013). US Patent 8,516,651Google Scholar
  4. 4.
    Sandin, P.E., Jones, J.L., et al.: Lawn care robot (January 21, 2014). US Patent 8,634,960Google Scholar
  5. 5.
    Wieser, I., Ruiz, A.V., Frassl, M., Angermann, M., Mueller, J., Lichtenstern, M.: Autonomous robotic slam-based indoor navigation for high resolution sampling with complete coverage. In: Position, Location and Navigation Symposium-PLANS 2014, 2014 IEEE/ION, pp. 945–951 (2014)Google Scholar
  6. 6.
    Müller, J.: Autonomous navigation for miniature indoor airships. PhD thesis, Universitätsbibliothek Freiburg (2013)Google Scholar
  7. 7.
    Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. IEEE Transactions on Robotics 28(1), 90–100 (2012)CrossRefGoogle Scholar
  8. 8.
    Kwak, N., Stasse, O., Foissotte, T., Yokoi, K.: 3d grid and particle based slam for a humanoid robot. In: 9th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2009, pp. 62–67 (2009)Google Scholar
  9. 9.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1052–1067 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kim, A., Eustice, R.M.: Real-time visual slam for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics (2013)Google Scholar
  11. 11.
    Stasse, O., Davison, A.J., Sellaouti, R., Yokoi, K.: Real-time 3d slam for humanoid robot considering pattern generator information. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 348–355 (2006)Google Scholar
  12. 12.
    Belter, D., Skrzypczynski, P.: Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping. Industrial Robot: An International Journal 40(3), 229–237 (2013)CrossRefGoogle Scholar
  13. 13.
    Bloesch, M., Hutter, M., Hoepflinger, M.A., Leutenegger, S., Gehring, C., Remy, C.D., Siegwart, R.: State estimation for legged robots-consistent fusion of leg kinematics and imu. Robotics 17 (2013)Google Scholar
  14. 14.
    Wawrzyński, P., Możaryn, J., Klimaszewski, J.: Robust estimation of walking robots velocity and tilt using proprioceptive sensors data fusion. Robotics and Autonomous Systems (2014)Google Scholar
  15. 15.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)Google Scholar
  16. 16.
    Diosi, A., Kleeman, L.: Fast laser scan matching using polar coordinates. The International Journal of Robotics Research 26(10), 1125–1153 (2007)CrossRefGoogle Scholar
  17. 17.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (1965)CrossRefGoogle Scholar
  18. 18.
    Jones, J.L.: RugWarriorPro: Assembly guide. AK Peters Ltd. (1999)Google Scholar
  19. 19.
    Manoonpong, P., Parlitz, U., Wörgötter, F.: Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Frontiers in Neural Circuits (2013)Google Scholar
  20. 20.
    Kümmerle, R., Ruhnke, M., Steder, B., Stachniss, C., Burgard, W.: Autonomous robot navigation in populated pedestrian zones. Journal of Field Robotics (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Patrick Kesper
    • 1
  • Lars Berscheid
    • 1
  • Florentin Wörgötter
    • 1
  • Poramate Manoonpong
    • 2
  1. 1.Third Institute of Physics - BiophysicsGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.CBR Embodied AI and Neurorobotics Lab, The Maersk Mc-Kinney Moller InstituteUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations