Advertisement

Data Visualization: An Untapped Potential for Political Participation and Civic Engagement

  • Samuel Bohman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9265)

Abstract

This article elaborates on the use of data visualization to promote a more informed and engaged participation in civic and democratic life. First, it outlines the main constraints and challenges in electronic participation research and concludes that the conventional deliberative approach to political participation has been impeding civic engagement. Then, through a couple of recent examples and a brief historical overview, it examines the power of data visualization. Following this, it explores the democratization of data visualization through four interconnected themes that provide new opportunities for political participation and civic engagement research: data storytelling, infographics, data physicalization, and the quantified self. The goal is to call attention to this space and encourage a larger community of researchers to explore the possibilities that data visualization can bring.

Keywords

Data visualization Political participation Civic engagement Electronic democracy Electronic participation 

Notes

Acknowledgments

This research has received funding from The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) under grant agreement no. 2011-3313-20412-31.

References

  1. 1.
    Arterton, F.C.: Political participation and teledemocracy. PS Polit. Sci. Polit. 21, 620–627 (1988)Google Scholar
  2. 2.
    Vedel, T.: The idea of electronic democracy: origins, visions and questions. Parliam. Aff. 59, 226–235 (2006)CrossRefGoogle Scholar
  3. 3.
    Chadwick, A.: Web 2.0: new challenges for the study of e-democracy in an era of informational exuberance. J. Law Policy Inf. Soc. 5, 9 (2008)Google Scholar
  4. 4.
    Norris, D.F., Reddick, C.G.: E-participation among American local governments. In: Wimmer, M.A., Tambouris, E., Macintosh, A. (eds.) ePart 2013. LNCS, vol. 8075, pp. 37–48. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Prieto-Martín, P., de Marcos, L., Martínez, J.J.: A critical analysis of EU-funded eparticipation. In: Charalabidis, Y., Koussouris, S. (eds.) Empowering Open and Collaborative Governance, pp. 241–262. Springer, Berlin (2012)CrossRefGoogle Scholar
  6. 6.
    Kloby, K., D’Agostino, M.J.: Citizen 2.0: Public and governmental interactionthrough Web 2.0 technologies. IGI Global, Hershey (2012)CrossRefGoogle Scholar
  7. 7.
    Macintosh, A., Coleman, S., Schneeberger, A.: eParticipation: the research gaps. In: Macintosh, A., Tambouris, E. (eds.) ePart 2009. LNCS, vol. 5694, pp. 1–11. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  8. 8.
    Johnson, J.A.: The illiberal culture of e-democracy. J. E-Gov. 3, 85–112 (2007)Google Scholar
  9. 9.
    Coleman, S., Moss, G.: Under construction:the field of online deliberation research. J. Inf. Technol. Polit. 9, 1–15 (2012)CrossRefGoogle Scholar
  10. 10.
    Wright, S.: Politics as usual? revolution, normalization and a new agenda for online deliberation. New Media Soc. 14, 244–261 (2012)CrossRefGoogle Scholar
  11. 11.
    Benn, N., Macintosh, A.: Argument visualization for eparticipation: towards a research agenda and prototype tool. In: Tambouris, E., Macintosh, A., de Bruijn, H. (eds.) ePart 2011. LNCS, vol. 6847, pp. 60–73. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Bohman, S.: Information technology in eparticipation research: a word frequency analysis. In: Tambouris, E., Macintosh, A., Bannister, F. (eds.) ePart 2014. LNCS, vol. 8654, pp. 78–89. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Guggenheim, D., Gore, A.: An Inconvenient Truth: A Global Warning [Motion picture]. Paramount Classics, United States (2006)Google Scholar
  14. 14.
    Gapminder: Unveiling the beauty of statistics for a fact-based world view. http://www.gapminder.org
  15. 15.
    Friendly, M.: Handbook of Data Visualization. In: Friendly, M. (ed.) A Brief History of Data Visualization. Springer Handbooks Comp.Statistics, vol. II, pp. 15–56. Springer, Heidelberg (2008) Google Scholar
  16. 16.
    Funkhouser, H.G.: Historical development of the graphical representation of statistical data. Osiris 3, 269–404 (1937)CrossRefGoogle Scholar
  17. 17.
    Friendly, M.: The golden age of statistical graphics. Stat. Sci. 23, 502–535 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Koch, T., Denike, K.: Essential, illustrative, or \(\dots \) just propaganda? Rethinking John Snow’s Broad Street map. Cartographica 45, 19–31 (2010)CrossRefGoogle Scholar
  19. 19.
    Magnello, M.E.: Victorian statistical graphics and the iconography of Florence Nightingale’s polar area graph. Bull. J. Br. Soc. Hist. Math. 27, 13–37 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Friendly, M.: Visions and re-visions of Charles Joseph Minard. J. Educ. Behav. Stat. 27, 31–51 (2002)CrossRefGoogle Scholar
  21. 21.
    Beniger, J.R., Robyn, D.L.: Quantitative graphics in statistics: a brief history. Am. Stat. 32, 1–11 (1978)zbMATHGoogle Scholar
  22. 22.
    Cat, J.: Otto Neurath. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2014). http://plato.stanford.edu/archives/win2014/entries/neurath
  23. 23.
    Neurath, O.: From Vienna method to Isotype. In: Neurath, M., Cohen, R.S. (eds.) Empiricism and Sociology, pp. 214–248. Springer, Netherlands (1973)CrossRefGoogle Scholar
  24. 24.
    Jansen, W.: Neurath, Arntz and Isotype: the legacy in art, design and statistics. J. Des. Hist. 22, 227–242 (2009)Google Scholar
  25. 25.
    Mayr, E., Schreder, G.: Isotype visualizations. A chance for participation and civic education. JeDEM 6, 136–150 (2014)Google Scholar
  26. 26.
    Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)zbMATHGoogle Scholar
  27. 27.
    Bertin, J.: Sémiologie Graphique: Les Diagrammes, Les Réseaux, Les Cartes. Gauthier-Villars, Paris (1967) Google Scholar
  28. 28.
    Tufte, E.R.: The Visual Display of Quantitative Information. Graphic Press, Cheshire (1983)Google Scholar
  29. 29.
    Bateman, S., Mandryk, R.L., Gutwin, C., Genest, A., McDine, D., Brooks, C.: Useful junk?: the effects of visual embellishment on comprehension and memorability of charts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2573–2582 (2010)Google Scholar
  30. 30.
    Cleveland, W.S.: Visualizing Data. AT&T Bell Laboratories, Murray Hill (1993)Google Scholar
  31. 31.
    Cleveland, W.S.: The Elements of Graphing Data. AT&T Bell Laboratories, Murray Hill (1994)Google Scholar
  32. 32.
    Wilkinson, L.: The Grammar of Graphics. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  33. 33.
    Wickham, H.A.: Practical tools for exploring data and models (2008). http://had.co.nz/thesis
  34. 34.
    Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Kaufmann, San Francisco (1999)Google Scholar
  35. 35.
    Few, S.: Show Me the Numbers: Designing Tables and Graphs to Enlighten. Analytics Press, Oakland (2004)Google Scholar
  36. 36.
    Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 421–430. ACM, New York (2005)Google Scholar
  37. 37.
    D3.js–Data-driven documents. http://d3js.org/
  38. 38.
    Danziger, M.: Information visualization for the people. Master thesis (2008)Google Scholar
  39. 39.
    Gray, J., Chambers, L., Bounegru, L., Ruetten, W.: The Data Journalism Handbook. O’Reilly Media, Sebastopol (2012)Google Scholar
  40. 40.
    Kosara, R., Mackinlay, J.: Storytelling: the next step for visualization. Computer 46, 44–50 (2013)CrossRefGoogle Scholar
  41. 41.
    Segel, E., Heer, J.: Narrative visualization: telling stories with data. IEEE Trans. Vis. Comput. Graph. 16, 1139–1148 (2010)CrossRefGoogle Scholar
  42. 42.
  43. 43.
    The New York Times’s most visited content of (2013). http://www.nytco.com/the-new-york-timess-most-visited-content-of-2013
  44. 44.
    Visual.ly: Original visual content for brands. http://www.visual.ly
  45. 45.
    Emerson, J.: Visualizing Information for Advocacy: An Introduction to Information Design (2008). http://backspace.com/infodesign.pdf
  46. 46.
    The White House: Infographics. http://www.whitehouse.gov/share/infographics
  47. 47.
    Smiciklas, M.: The Power of Infographics: Using Pictures to Communicate and Connect with Your Audience. Que Pub, Indianapolis (2012)Google Scholar
  48. 48.
    Cairo, A.: Graphics lies, misleading visuals. In: Bihanic, D. (ed.) New Challenges for Data Design, pp. 103–116. Springer, London (2015)Google Scholar
  49. 49.
    Tufte, E.R.: Beautiful Evidence. Graphics Press, Cheshire (2006)Google Scholar
  50. 50.
    Krum, R.: Cool Infographics: Effective Communication with Data Visualization and Design. Wiley, New York (2013)Google Scholar
  51. 51.
    Vande Moere, A.: Beyond the tyranny of the pixel: exploring the physicality of information visualization. In: 12th International Conference on Information Visualisation, pp. 469–474 (2008)Google Scholar
  52. 52.
    Jansen, Y., Dragicevic, P., Fekete, J-D.: Evaluating the efficiency of physical visualizations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2593–2602. ACM, New York (2013)Google Scholar
  53. 53.
    Data cuisine. Exploring food as a form of data expression. http://data-cuisine.net
  54. 54.
    Quantified self–Self knowledge through numbers. http://quantifiedself.com
  55. 55.
    Fox, S., Duggan, M.: Mobile health (2012). Pew Research Center. http://www.pewinternet.org/2012/11/08/mobile-health-2012
  56. 56.
    Singer, E.: The measured life. Technol. Rev. 114, 38–45 (2011)Google Scholar
  57. 57.
    Kanter, D.: A year in diabetes data. http://www.databetic.com

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer and Systems SciencesStockholm UniversityStockholmSweden

Personalised recommendations