microRNAs in Pancreatic β-Cell Physiology

  • Sabire ÖzcanEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 887)


The β-cells within the pancreas are responsible for production and secretion of insulin. Insulin is released from pancreatic β-cells in response to increasing blood glucose levels and acts on insulin-sensitive tissues such as skeletal muscle and liver in order to maintain normal glucose homeostasis. Therefore, defects in pancreatic β-cell function lead to hyperglycemia and diabetes mellitus. A new class of molecules called microRNAs has been recently demonstrated to play a crucial role in regulation of pancreatic β-cell function under normal and pathophysiological conditions. miRNAs have been shown to regulate endocrine pancreas development, insulin biosynthesis, insulin exocytosis, and β-cell expansion. Many of the β-cell enriched miRNAs have multiple functions and regulate pancreas development as well as insulin biosynthesis and exocytosis. Furthermore, several of the β-cell specific miRNAs have been shown to accumulate in the circulation before the onset of diabetes and may serve as potential biomarkers for prediabetes. This chapter will focus on miRNAs that are enriched in pancreatic β-cells and play a critical role in modulation of β-cell physiology and may have clinical significance in the treatment of diabetes.


miRNA β-Cell Islets Insulin Diabetes Insulin secretion β-Cell failure Endocrine pancreas Insulin biosynthesis Dicer1 Ago2 



We apologize to all authors, whose original publications were omitted in this chapter due to space constraints. Research in the author’s laboratory was supported by grants R01DK067581 from the NIH/NIDDK, P20RR020171 from NIH/NCRR, 1-05-CD-15 from ADA, 14GRNT20380383 from AHA, and UL1TR000117 from NIH CTSA.


  1. 1.
    U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes. 1995;44(11):1249–58.Google Scholar
  2. 2.
    Levy J, Atkinson AB, Bell PM, McCance DR, Hadden DR. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast diet study. Diabet Med. 1998;15(4):290–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Dumortier O, Van Obberghen E. MicroRNAs in pancreas development. Diabetes Obes Metab. 2012;14 Suppl 3:22–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia. 2013;56(10):2203–12.CrossRefPubMedGoogle Scholar
  6. 6.
    Ozcan S. Minireview: microRNA function in pancreatic beta cells. Mol Endocrinol. 2014;28(12):1922–33.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Singer RA, Arnes L, Sussel L. Noncoding RNAs in beta cell biology. Curr Opin Endocrinol Diabetes Obes. 2015;22(2):77–85.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A. 2005;102(31):10898–903.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007;56(12):2938–45.CrossRefPubMedGoogle Scholar
  11. 11.
    Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, et al. miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 2011;30(5):835–45.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kalis M, Bolmeson C, Esguerra JL, Gupta S, Edlund A, Tormo-Badia N, et al. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One. 2011;6(12), e29166.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mandelbaum AD, Melkman-Zehavi T, Oren R, Kredo-Russo S, Nir T, Dor Y, et al. Dysregulation of Dicer1 in beta cells impairs islet architecture and glucose metabolism. Exp Diabetes Res. 2012;2012:470302.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447–59.CrossRefPubMedGoogle Scholar
  15. 15.
    Dueck A, Meister G. Assembly and function of small RNA—argonaute protein complexes. Biol Chem. 2014;395(6):611–29.CrossRefPubMedGoogle Scholar
  16. 16.
    Tattikota SG, Rathjen T, McAnulty SJ, Wessels HH, Akerman I, van de Bunt M, et al. Argonaute2 mediates compensatory expansion of the pancreatic beta cell. Cell Metab. 2014;19(1):122–34.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tattikota SG, Sury MD, Rathjen T, Wessels HH, Pandey AK, You X, et al. Argonaute2 regulates the pancreatic beta-cell secretome. Mol Cell Proteomics. 2013;12(5):1214–25.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A. 2009;106(14):5813–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol. 2013;29:81–105.CrossRefPubMedGoogle Scholar
  20. 20.
    Murtaugh LC. Pancreas and beta-cell development: from the actual to the possible. Development. 2007;134(3):427–38.CrossRefPubMedGoogle Scholar
  21. 21.
    Docherty K. Pancreatic stellate cells can form new beta-like cells. Biochem J. 2009;421(2):e1–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129(10):2447–57.PubMedGoogle Scholar
  23. 23.
    Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 2000;97(4):1607–11.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kredo-Russo S, Mandelbaum AD, Ness A, Alon I, Lennox KA, Behlke MA, et al. Pancreas-enriched miRNA refines endocrine cell differentiation. Development. 2012;139(16):3021–31.CrossRefPubMedGoogle Scholar
  25. 25.
    Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns. 2009;9(4):193–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Joglekar MV, Patil D, Joglekar VM, Rao GV, Reddy DN, Mitnala S, et al. The miR-30 family of microRNAs confer epithelial phenotype to human pancreatic cells. Islets. 2009;1(2):137–47.CrossRefPubMedGoogle Scholar
  27. 27.
    Bravo-Egana V, Rosero S, Molano RD, Pileggi A, Ricordi C, Dominguez-Bendala J, et al. Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochem Biophys Res Commun. 2008;366(4):922–6.CrossRefPubMedGoogle Scholar
  28. 28.
    St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997;387(6631):406–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Sander M, Neubuser A, Kalamaras J, Ee HC, Martin GR, German MS. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 1997;11(13):1662–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem. 2007;282(27):19575–88.CrossRefPubMedGoogle Scholar
  31. 31.
    Klein D, Misawa R, Bravo-Egana V, Vargas N, Rosero S, Piroso J, et al. MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS One. 2013;8(1), e55064.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 2007;5(8), e203.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee CS, De Leon DD, Kaestner KH, Stoffers DA. Regeneration of pancreatic islets after partial pancreatectomy in mice does not involve the reactivation of neurogenin-3. Diabetes. 2006;55(2):269–72.PubMedGoogle Scholar
  34. 34.
    Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab. 2007;18(10):393–400.CrossRefPubMedGoogle Scholar
  35. 35.
    Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol. 2007;311(2):603–12.CrossRefPubMedGoogle Scholar
  36. 36.
    Andrali SS, Sampley ML, Vanderford NL, Ozcan S. Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J. 2008;415(1):1–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Steiner DF, Chan SJ, Welsh JM, Kwok SC. Structure and evolution of the insulin gene. Annu Rev Genet. 1985;19:463–84.CrossRefPubMedGoogle Scholar
  38. 38.
    Iguchi H, Ikeda Y, Okamura M, Tanaka T, Urashima Y, Ohguchi H, et al. SOX6 attenuates glucose-stimulated insulin secretion by repressing PDX1 transcriptional activity and is down-regulated in hyperinsulinemic obese mice. J Biol Chem. 2005;280(45):37669–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic b cells reveals a role for miR-30d in insulin transcription. RNA. 2009;15(2):287–93.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim JW, You YH, Jung S, Suh-Kim H, Lee IK, Cho JH, et al. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia. 2013;56(4):847–55.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhao X, Mohan R, Ozcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J Biol Chem. 2012;287(37):31155–64.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49(11):1751–60.CrossRefPubMedGoogle Scholar
  43. 43.
    Seino S, Shibasaki T, Minami K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest. 2011;121(6):2118–25.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Latreille M, Hausser J, Stutzer I, Zhang Q, Hastoy B, Gargani S, et al. MicroRNA-7a regulates pancreatic beta cell function. J Clin Invest. 2014;124(6):2722–35.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006;281(37):26932–42.CrossRefPubMedGoogle Scholar
  46. 46.
    Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. FEBS J. 2011;278(7):1167–74.CrossRefPubMedGoogle Scholar
  47. 47.
    Fukuda M. Rab27 and its effectors in secretory granule exocytosis: a novel docking machinery composed of a Rab27.effector complex. Biochem Soc Trans. 2006;34(Pt 5):691–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Gomi H, Mizutani S, Kasai K, Itohara S, Izumi T. Granuphilin molecularly docks insulin granules to the fusion machinery. J Cell Biol. 2005;171(1):99–109.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2(2):105–17.CrossRefPubMedGoogle Scholar
  50. 50.
    Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006;4(2), e31.CrossRefPubMedGoogle Scholar
  51. 51.
    Poy MN, Spranger M, Stoffel M. MicroRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab. 2007;9 Suppl 2:67–73.CrossRefPubMedGoogle Scholar
  52. 52.
    Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem. 2008;389(3):305–12.CrossRefPubMedGoogle Scholar
  53. 53.
    Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes. 2010;59(4):978–86.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Regazzi R, Sadoul K, Meda P, Kelly RB, Halban PA, Wollheim CB. Mutational analysis of VAMP domains implicated in Ca2 + -induced insulin exocytosis. EMBO J. 1996;15(24):6951–9.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Yaekura K, Julyan R, Wicksteed BL, Hays LB, Alarcon C, Sommers S, et al. Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem. 2003;278(11):9715–21.CrossRefPubMedGoogle Scholar
  56. 56.
    Kang MH, Zhang LH, Wijesekara N, de Haan W, Butland S, Bhattacharjee A, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol. 2013;33(12):2724–32.CrossRefPubMedGoogle Scholar
  57. 57.
    Wijesekara N, Zhang LH, Kang MH, Abraham T, Bhattacharjee A, Warnock GL, et al. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes. 2012;61(3):653–8.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Brunham LR, Kruit JK, Pape TD, Timmins JM, Reuwer AQ, Vasanji Z, et al. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat Med. 2007;13(3):340–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhao E, Keller MP, Rabaglia ME, Oler AT, Stapleton DS, Schueler KL, et al. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice. Mamm Genome. 2009;20(8):476–85.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A. 2005;102(45):16426–31.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Soni MS, Rabaglia ME, Bhatnagar S, Shang J, Ilkayeva O, Mynatt R, et al. Downregulation of carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion. Diabetes. 2014;63(11):3805–14.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013;18(2):162–85.CrossRefPubMedGoogle Scholar
  63. 63.
    Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5(4):219–26.CrossRefPubMedGoogle Scholar
  64. 64.
    Ruan Q, Wang T, Kameswaran V, Wei Q, Johnson DS, Matschinsky F, et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci U S A. 2011;108(29):12030–5.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283(2):1026–33.CrossRefPubMedGoogle Scholar
  66. 66.
    Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, et al. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes. 2012;61(7):1742–51.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF, Garcia-Ocana A. Human beta-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes. 2014;63(3):819–31.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang Y, Liu J, Liu C, Naji A, Stoffers DA. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells. Diabetes. 2013;62(3):887–95.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.CrossRefPubMedGoogle Scholar
  70. 70.
    Hamada S, Hara K, Hamada T, Yasuda H, Moriyama H, Nakayama R, et al. Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia. Diabetes. 2009;58(6):1321–32.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Araujo TG, Oliveira AG, Saad MJ. Insulin-resistance-associated compensatory mechanisms of pancreatic Beta cells: a current opinion. Front Endocrinol. 2013;4:146.CrossRefGoogle Scholar
  72. 72.
    Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology. 2005;146(5):2397–405.CrossRefPubMedGoogle Scholar
  73. 73.
    Chen J, Saxena G, Mungrue IN, Lusis AJ, Shalev A. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes. 2008;57(4):938–44.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chen J, Hui ST, Couto FM, Mungrue IN, Davis DB, Attie AD, et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 2008;22(10):3581–94.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Filios SR, Xu G, Chen J, Hong K, Jing G, Shalev A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem. 2014;289(52):36275–83.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68(19):7846–54.CrossRefPubMedGoogle Scholar
  77. 77.
    Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Guay C, Regazzi R. Role of islet microRNAs in diabetes: which model for which question? Diabetologia. 2015;58(3):456–63.CrossRefPubMedGoogle Scholar
  79. 79.
    Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ. Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology. 2013;154(2):603–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiochemistryCollege of Medicine, University of KentuckyLexingtonUSA

Personalised recommendations