Uncertain Voronoi Cell Computation Based on Space Decomposition

  • Tobias Emrich
  • Klaus Arthur SchmidEmail author
  • Andreas Züfle
  • Matthias Renz
  • Reynold Cheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9239)


The problem of computing Voronoi cells for spatial objects whose locations are not certain has been recently studied. In this work, we propose a new approach to compute Voronoi cells for the case of objects having rectangular uncertainty regions. Since exact computation of Voronoi cells is hard, we propose an approximate solution. The main idea of this solution is to apply hierarchical access methods for both data and object space. Our space index is used to efficiently find spatial regions which must (not) be inside a Voronoi cell. Our object index is used to efficiently identify Delauny relations, i.e., data objects which affect the shape of a Voronoi cell. We develop three algorithms to explore index structures and show that the approach that descends both index structures in parallel yields fast query processing times. Our experiments show that we are able to approximate uncertain Voronoi cells much more effectively than the state-of-the-art, and at the same time, improve run-time performance.


Voronoi Cell Hierarchical Access Method Index Space Spatial Domination Uncertain Objects 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Part of the research leading to these results has received funding from the Deutsche Forschungsgemeinschaft (DFG) under grant number RE 266/5-1 and from the DAAD supported by BMBF under grant number 57055388. Reynold Cheng was supported by the Research Grants Council of Hong Kong (RGC Project (HKU 711110)).


  1. 1.
    Chow, C.Y., Mokbel, M.F., Aref, W.G.: Casper*: query processing for location services without compromising privacy. ACM TODS 34(4), 24 (2009)CrossRefGoogle Scholar
  2. 2.
    Beskales, G., Soliman, M.A., Ilyas, I.F.: Efficient search for the top-k probable nearest neighbors in uncertain databases. VLDB Endow. 1(1), 326–339 (2008)CrossRefGoogle Scholar
  3. 3.
    Cheng, R., Xie, X., Yiu, M.L., Chen, J., Sun, L.: Uv-diagram: A voronoi diagram for uncertain data. In: ICDE, pp. 796–807. IEEE (2010)Google Scholar
  4. 4.
    Ali, M.E., Tanin, E., Zhang, R., Kotagiri, R.: Probabilistic voronoi diagrams for probabilistic moving nearest neighbor queries. DKE 75, 1–33 (2012)CrossRefGoogle Scholar
  5. 5.
    Bernecker, T., Emrich, T., Kriegel, H.P., Mamoulis, N., Renz, M., Züfle, A.: A novel probabilistic pruning approach to speed up similarity queries in uncertain databases. In: Proceedings of the ICDE, pp. 339–350 (2011)Google Scholar
  6. 6.
    Zhang, P., Cheng, R., Mamoulis, N., Renz, M., Zufle, A., Tang, Y., Emrich, T.: Voronoi-based nearest neighbor search for multi-dimensional uncertain databases. In: ICDE, pp. 158–169. IEEE (2013)Google Scholar
  7. 7.
    Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: SIGSPATIAL, pp. 99–108 (2010)Google Scholar
  8. 8.
    Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: SIGKDD, pp. 316–324 (2011)Google Scholar
  9. 9.
    Emrich, T., Kriegel, H.P., Mamoulis, N., Renz, M., Züfle, A.: Querying uncertain spatio-temporal data. In: ICDE, pp. 354–365. IEEE (2012)Google Scholar
  10. 10.
    Emrich, T., Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A.: Incremental reverse nearest neighbor ranking in vector spaces. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 265–282. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust access method for points and rectangles, vol. 19. ACM (1990)Google Scholar
  12. 12.
    Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching. In: ACM SIGACT-SIGMOD, pp. 181–190. ACM (1984)Google Scholar
  13. 13.
    Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving object environments. In: IEEE TKDE (2004)Google Scholar
  14. 14.
    Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic databases. VLDB Endow. 2(1), 502–513 (2009)CrossRefGoogle Scholar
  15. 15.
    Bernecker, T., Kriegel, H.P., Mamoulis, N., Renz, M., Zuefle, A.: Scalable probabilistic similarity ranking in uncertain databases. TKDE 22(9), 1234–1246 (2010)Google Scholar
  16. 16.
    Aurenhammer, F.: Voronoi diagrams-a survey of a fundamental geometric data structure. ACM CSUR 23(3), 345–405 (1991)CrossRefGoogle Scholar
  17. 17.
    Sharifzadeh, M., Shahabi, C.: Vor-tree: R-trees with Voronoi diagrams for efficient processing of spatial nearest neighbor queries. VLDB Endow. 3(1–2), 1231–1242 (2010)CrossRefGoogle Scholar
  18. 18.
    Zheng, B., Xu, J., Lee, W.C., Lee, L.: Grid-partition index: a hybrid method for nearest-neighbor queries in wireless location-based services. VLDB J. 15(1), 21–39 (2006)CrossRefGoogle Scholar
  19. 19.
    Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The V*-Diagram: a query-dependent approach to moving kNN queries. VLDB Endow. 1(1), 1095–1106 (2008)CrossRefGoogle Scholar
  20. 20.
    Sharifzadeh, M., Shahabi, C.: Approximate Voronoi cell computation on spatial data streams. VLDB J. 18(1), 57–75 (2009)CrossRefGoogle Scholar
  21. 21.
    Akdogan, A., Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Voronoi-based geospatial query processing with mapreduce. In: IEEE CloudCom, pp. 9–16 IEEE (2010)Google Scholar
  22. 22.
    Kolahdouzan, M., Shahabi, C.: Voronoi-based K nearest neighbor search for spatial network databases. In: VLDB Endowment, pp. 840–851 (2004)Google Scholar
  23. 23.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: ACM SIGMOD, vol, 24, pp. 71–79 ACM (1995)Google Scholar
  24. 24.
    Emrich, T., Kriegel, H.P., Kröger, P., Renz, M., Züfle, A.: Boosting spatial pruning: On optimal pruning of MBRs. In: Proceedings of the SIGMOD, pp. 39–50 (2010)Google Scholar
  25. 25.
    Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Proceedings of the SSD, pp. 83–95 (1995)Google Scholar
  26. 26.
    Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining with 3D-parallel-coordinate-trees. In: Proceedings of the SIGMOD, pp. 1009–1012 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tobias Emrich
    • 1
  • Klaus Arthur Schmid
    • 1
    Email author
  • Andreas Züfle
    • 1
  • Matthias Renz
    • 1
  • Reynold Cheng
    • 2
  1. 1.Institute for InformaticsLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Department of Computer ScienceUniversity of Hong KongHong KongChina

Personalised recommendations