COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs

  • Alexandros EfentakisEmail author
  • Christodoulos Efstathiades
  • Dieter Pfoser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9239)


Shortest-path computation is a well-studied problem in algorithmic theory. An aspect that has only recently attracted attention is the use of databases in combination with graph algorithms to compute distance queries on large graphs. To this end, we propose a novel, efficient, pure-SQL framework for answering exact distance queries on large-scale graphs, implemented entirely on an open-source database system. Our COLD framework (COmpressed Labels on the Database) may answer multiple distance queries (vertex-to-vertex, one-to-many, \(k\)NN, R\(k\)NN) not handled by previous methods, rendering it a complete solution for a variety of practical applications in large-scale graphs. Experimental results will show that COLD outperforms previous approaches (including popular graph databases) in terms of query time and efficiency, while requiring significantly less storage space than previous methods.


Road Network Graph Database Unweighted Graph Secondary Storage Distance Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by EU (European Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund and the EU/Greece funded KRIPIS Action: MEDA Project. D. Pfoser’s work was partially supported by the NGA NURI grant HM02101410004.


  1. 1.
    Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Hldb: Location-based services in databases. In: SIGSPATIAL GIS. ACM, November 2012Google Scholar
  2. 2.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Akiba, T., Iwata, Y., Kawarabayashi, K., Kawata, Y.: Fast shortest-path distance queries on road networks by pruned highway labeling. In: 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2014, Portland, Oregon, USA, 5 January 2014, pp. 147–154 (2014)Google Scholar
  5. 5.
    Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, USA, pp. 349–360 (2013)Google Scholar
  6. 6.
    Akiba, T., Iwata, Y., Yoshida, Y.: Pruned landmark labeling (2015).
  7. 7.
    Albert, R., Jeong, H., Barabási, A.-L.: The diameter of the world wide web, CoRR (1999). http://cond-mat/9907038
  8. 8.
    Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning and Graph Clustering. Contemporary Mathematics, vol. 588. American Mathematical Society, Providence (2013) zbMATHGoogle Scholar
  9. 9.
    Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route planning in transportation networks. CoRR, abs/1504.05140 (2015)Google Scholar
  10. 10.
    Borutta, F., Nascimento, M.A., Niedermayer, J., Kröger, P.: Monochromatic rknn queries in time-dependent road networks. In: Proceedings of the Third ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems, MobiGIS 2014 pp. 26–33, New York, NY, USA. ACM (2014)Google Scholar
  11. 11.
    Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 1082–1090 (2011)Google Scholar
  12. 12.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2002, pp. 937–946. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2002)Google Scholar
  13. 13.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  14. 14.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust distance queries on massive networks. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 321–333. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Delling, D., Goldberg, A.V., Werneck, R.F.: Hub label compression. In: Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 18–29. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Delling, D., Goldberg, A.V., Werneck, R.F.F.: Faster batched shortest paths in road networks. In: ATMOS, pp. 52–63 (2011)Google Scholar
  17. 17.
    Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road networks. In: 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2013, Orlando, FL, USA, 5–8 November 2013, pp. 490–493 (2013)Google Scholar
  18. 18.
    Delling, D., Werneck, R.F.: Better bounds for graph bisection. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 407–418. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: CTS: 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science, 5 November 2013, Orlando, FL, USA, p. 25 (2013)Google Scholar
  20. 20.
    Efentakis, A., Pfoser, D.: GRASP. extending graph separators for the single-source shortest-path problem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 358–370. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Efentakis, A., Pfoser, D.: ReHub. Extending hub labels for reverse k-nearest neighbor queries on large-scale networks (2015). arXiv preprint http://arXiv:1504.01497
  22. 22.
    Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. a unified framework for all shortest-path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 298–311. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  23. 23.
    Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2001, pp. 210–219. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2001)Google Scholar
  24. 24.
    Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness centrality. In: Munro, J.I., Wagner, D. (eds.) ALENEX, pp. 90–100. SIAM (2008)Google Scholar
  25. 25.
    Jiang, M., Fu, A.W., Wong, R.C., Xu, Y.: Hop doubling label indexing for point-to-point distance querying on scale-free networks. PVLDB 7(12), 1203–1214 (2014)Google Scholar
  26. 26.
    Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014.
  27. 27.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, Proceedings of a meeting held 3–6 December 2012, Lake Tahoe, Nevada, United States, pp. 548–556 (2012)Google Scholar
  29. 29.
    PostgreSQL. The world’s most advanced open source database (2015).
  30. 30.
    Safar, M., Ibrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor query processing on spatial networks. Multimedia Syst. 15(5), 295–308 (2009)CrossRefGoogle Scholar
  31. 31.
    Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium, 10–13 December 2012, pp. 745–754 (2012)Google Scholar
  32. 32.
    Yiu, M.L., Papadias, D., Mamoulis, N., Tao, Y.: Reverse nearest neighbors in large graphs. IEEE Trans. Knowl. Data Eng. 18(4), 540–553 (2006)CrossRefGoogle Scholar
  33. 33.
    Zhong, R., Li, G., Tan, K.-L., Zhou, L.: G-tree: An efficient index for knn search on road networks. In: Proceedings of the 22nd ACM International Conference on Conference on Information Knowledge Management, CIKM 2013, pp. 39–48. ACM, New York, NY, USA (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexandros Efentakis
    • 1
    Email author
  • Christodoulos Efstathiades
    • 1
    • 2
  • Dieter Pfoser
    • 3
  1. 1.Research Center “Athena”MarousiGreece
  2. 2.Knowledge and Database Systems LaboratoryNational Technical University of AthensZografouGreece
  3. 3.Department of Geography and GeoInformation ScienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations