Advertisement

Jumping Finite Automata: Characterizations and Complexity

  • Henning Fernau
  • Meenakshi Paramasivan
  • Markus L. Schmid
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9223)

Abstract

We characterize the class of languages described by jumping finite automata (i. e., finite automata, for which the input head after reading (and consuming) a symbol, can jump to an arbitrary position of the remaining input) in terms of special shuffle expressions. We can characterize some interesting subclasses of this language class. The complexity of parsing these languages is also investigated.

Keywords

Normal Form Regular Expression Regular Language Finite Automaton Input Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Crespi-Reghizzi, S., San Pietro, P.: Commutative languages and their composition by consensual methods. In: Ésik, V., Fülöp, Z. (eds.) Proceedings 14th International Conference on Automata and Formal Languages (AFL), vol. 151 of EPTCS, pp. 216–230 (2014)Google Scholar
  2. 2.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Eggan, L.C.: Transition graphs and the star-height of regular events. Mich. Math. J. 10(4), 385–397 (1963)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theor. Comput. Sci. 27, 311–332 (1983)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: A simple and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hashiguchi, K.: Algorithms for determining relative star height and star height. Inf. Comput. 78(2), 124–169 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Höpner, M., Opp, M.: About three equations classes of languages built up by shuffle operations. In: Mazurkiewicz, A.W. (ed.) MFCS 1976. LNCS, vol. 45, pp. 337–344. Springer, Heidelberg (1976) CrossRefGoogle Scholar
  8. 8.
    Jantzen, M.: Eigenschaften von Petrinetzsprachen. Technical report IFI-HH-B-64, Fachbereich Informatik, Universität Hamburg, Germany (1979)Google Scholar
  9. 9.
    Jantzen, M.: The power of synchronizing operations on strings. Theor. Comput. Sci. 14, 127–154 (1981)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Jantzen, M.: Extending regular expressions with iterated shuffle. Theor. Comput. Sci. 38, 223–247 (1985)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Jedrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theor. Comput. Sci. 250(1–2), 31–53 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jiang, H., Su, B., Xiao, M., Xu, Y., Zhong, F., Zhu, B.: On the exact block cover problem. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 13–22. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Klíma, O., Polák, L.: On biautomata. RAIRO Informatique théorique et Appl. Theor. Inf. Appl. 46, 573–592 (2012)CrossRefMATHGoogle Scholar
  14. 14.
    Latteux, M., Rozenberg, G.: Commutative one-counter languages are regular. J. Comput. Sys. Sci. 1, 54–57 (1984)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci. 23(7), 1555–1578 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Meduna, A., Zemek, P.: Chapter 17: Jumping finite automata. In: Meduna, A., Zemek, P. (eds.) Regulated Grammars and Automata, pp. 567–585. Springer, New York (2014)CrossRefGoogle Scholar
  17. 17.
    Otto, F.: Restarting automata. In: Ésik, Z., Martín-Vide, C., Mitrana, V. (eds.) FCT 1995, vol. 965, pp. 269–303. Springer, Heidelberg (2006) Google Scholar
  18. 18.
    Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Henning Fernau
    • 1
  • Meenakshi Paramasivan
    • 1
  • Markus L. Schmid
    • 1
  1. 1.Fachbereich 4 – Abteilung InformatikUniversität TrierTrierGermany

Personalised recommendations