Security of Numerical Sensors in Automata

  • Zhe Dang
  • Dmitry Dementyev
  • Thomas R. Fischer
  • William J. HuttonIIIEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9223)


Numerical sensors are numerical functions applied on memory contents. We study the computability of the mutual information rate between two sensors in various forms of automata, including nondeterministic pushdown automata augmented with reversal-bounded counters as well as discrete timed automata. The computed mutual information rate can be used to determine whether it is the case that there is essentially no information flow between a low sensor and a high sensor and hence could provide a way to quantitatively and algorithmically analyze some covert channels.


Mutual Information Bipartite Graph Covert Channel Memory Content Input Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alvim, M.. Andrs, M., Palamidessi, C.: Probabilistic information flow. In: LICS 2010, pp. 314–321Google Scholar
  3. 3.
    Backes, M., Berg, M., Köpf, B.: Non-uniform distributions in quantitative information-flow. In: ASIACCS 2011, pp. 367–375Google Scholar
  4. 4.
    Bishop, M.: Introduction to Computer Security. Addison-Wesley, Reading (2011)Google Scholar
  5. 5.
    Chomsky, N., Miller, G.A.: Finite state languages. Inf. Control 1, 91–112 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (2006)zbMATHGoogle Scholar
  7. 7.
    Cui, C., Dang, Z., Fischer, V, Ibarra, O.H.: Execution information rate for some classes of automata. Information and Computation (accepted)Google Scholar
  8. 8.
    Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Information Rate of Some Classes of Nonregular Languages: An Automata-Theoretic Approach, Information and Computation (conditionally accepted)Google Scholar
  9. 9.
    Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary reachability analysis of discrete pushdown timed automata. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 65–84. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  10. 10.
    Dang, Z.: Pushdown timed automata: a binary reachability characterization and safety verification. Theoret. Comput. Sci. 302(13), 93–121 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dang, Z., Fischer, T., Hutton, W., Ibarra, O., Li, Q.: Quantifying communication in synchronized languages. In: COCOON 2015 (to appear)Google Scholar
  12. 12.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009) CrossRefzbMATHGoogle Scholar
  13. 13.
    Gonnet, G.H.: Expected length of the longest probe sequence in hash code searching. J. ACM 28, 289–304 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing Company, Reading (1979) zbMATHGoogle Scholar
  15. 15.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ibarra, O.H., Dang, Z., Egecioglu, O., Saxena, G.: Characterizations of catalytic membrane computing systems. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 480–489. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  17. 17.
    Kaminger, F.P.: The noncomputability of the channel capacity of context-sensitive languages. Inf. Comput. 17(2), 175–182 (1970)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kuich, W.: On the entropy of context-free languages. Inf. Control 16(2), 173–200 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Time and probability-based information flow analysis. IEEE TSE 36(5), 719–734 (2010)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Li, Q., Dang, Z.: Sampling automata and programs. Theoret. Comput. Sci. 577, 125–140 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lowe, G.: Defining information flow quantity. J. Comput. Secur. 12(3–4), 619–653 (2004)Google Scholar
  22. 22.
    Mu, C., Clark, D.: Quantitative analysis of secure information flow via probabilistic semantics. In: ARES 2009, pp. 49–57Google Scholar
  23. 23.
    Paun, G.: Membrane Computing: An Introduction. Springer, Berlin (2000) Google Scholar
  24. 24.
    Raab, M., Steger, A.: “Balls into Bins” - a simple and tight analysis. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, p. 159. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  25. 25.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Champaign (1949) zbMATHGoogle Scholar
  26. 26.
    Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  27. 27.
    Xie, G., Dang, Z., Ibarra, O.: A solvable class of quadratic Diophantine equations with applications to verification of infinite-state systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zhe Dang
    • 1
  • Dmitry Dementyev
    • 1
  • Thomas R. Fischer
    • 1
  • William J. HuttonIII
    • 1
    Email author
  1. 1.School of Electrical Engineering and Computer ScienceWashington State UniversityPullmanUSA

Personalised recommendations