More on Deterministic and Nondeterministic Finite Cover Automata

Extended Abstract
  • Hermann Gruber
  • Markus Holzer
  • Sebastian Jakobi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9223)


Finite languages are an important sub-regular language family, which were intensively studied during the last two decades in particular from a descriptional complexity perspective. An important contribution to the theory of finite languages are the deterministic and the recently introduced nondeterministic finite cover automata (DFCAs and NFCAs, respectively) as an alternative representation of finite languages by ordinary finite automata. We compare these two types of cover automata from a descriptional complexity point of view, showing that these devices have a lot in common with ordinary finite automata. In particular, we study how to adapt lower bound techniques for nondeterministic finite automata to NFCAs such as, e.g., the biclique edge cover technique, solving an open problem from the literature. Moreover, the trade-off of conversions between DFCAs and NFCAs as well as between finite cover automata and ordinary finite automata are investigated. Finally, we present some results on the average size of finite cover automata.


Bipartite Graph Boolean Function State Complexity Regular Language Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Birget, J.C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 185–190 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bassino, F., Giambruno, L., Nicaud, C.: The average state complexity of rational operations on finite languages. Internat. J. Found. Comput. Sci. 21(4), 495–516 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brzozowski, J.A.: Canonical Regular Expressions and Minimal State Graphs for Definite Events. Mathematical Theory of Automata, MRI Symposia Series. Polytechnic Press, New York (1962)Google Scholar
  4. 4.
    Câmpeanu, C.: Non-deterministic finite cover automata. Sci. Ann. Comput. Sci. 25(1), 3–28 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Câmpeanu, C., Ho, W.H.: The maximum state complexity for finite languages. J. Autom. Lang. Comb. 9(2–3), 189–202 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Câmpeanu, C., Kari, L., Păun, A.: Results on Transforming NFA into DFCA. Fundam. Inform. 64(1–4), 53–63 (2005)zbMATHGoogle Scholar
  7. 7.
    Câmpeanu, C., Moreira, N., Reis, R.: Expected compression ratio for DFCA: experimental average case analysis. Universidade do Porto (2011), Technical report DCC-2011-07Google Scholar
  8. 8.
    Câmpeanu, C., Păun, A., Smith, J.R.: Tight bounds for the state complexity of deterministic cover automata. In: Leung, H., Pighizzini, G. (eds.) Proceedings of the 8th Workshop on Descriptional Complexity of Formal Systems, pp. 223–231, Las Cruces (2006), Computer Science Technical report NMSU-CS-2006-001Google Scholar
  9. 9.
    Câmpeanu, C., Păun, A., Yu, S.: An efficient algorithm for constructing minimal cover automata for finite languages. Internat. J. Found. Comput. Sci. 13(1), 83–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages. Theoret. Comput. Sci. 267(1–2), 3–16 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Champarnaud, J.M., Guingne, F., Hansel, G.: Similarity relations and cover automata. RAIRO-Informatique théorique et Appl. Theor. Inform. Appl. 39(1), 115–123 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Champarnaud, J.M., Pin, J.E.: A maxmin problem on finite automata. Discrete Appl. Math. 23, 91–96 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Domaratzki, M., Kisman, D., Shallit, J.: On the number of distinct languages accepted by finite automata with n states. J. Autom. Lang. Comb. 7(4), 469–486 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inform. Process. Lett. 59, 75–77 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gramlich, G., Schnitger, G.: Minimizing nfa’s and regular expressions. J. Comput. System Sci. 73(6), 908–923 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity is hard. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  17. 17.
    Gruber, H., Holzer, M.: Results on the average state and transition complexity of finite automata accepting finite languages. Theoret. Comput. Sci. 387(2), 155–166 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Newyork (1978)zbMATHGoogle Scholar
  19. 19.
    Holzer, M., Jakobi, S.: From equivalence to almost-equivalence, and beyond: minimizing automata with errors. Internat. J. Found. Comput. Sci. 24(7), 1083–1134 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lucchesi, C.L., Kowaltowski, T.: Applications of finite automata representing large vocabularies. Softw. Pract. Exper. 23(1), 15–30 (1993)CrossRefGoogle Scholar
  21. 21.
    Körner, H.: A time and space efficient algorithm for minimizing cover automata for finite languages. Internat. J. Found. Comput. Sci. 14(6), 1071–1086 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lupanov, O.B.: Über den Vergleich zweier Typen endlicher Quellen. Probleme der Kybernetik 6, 328–335 (1966)zbMATHGoogle Scholar
  24. 24.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Salomaa, K., Yu, S.: NFA to DFA transformation for finite language over arbitrary alphabets. J. Autom. Lang. Comb. 2(3), 177–186 (1997)MathSciNetGoogle Scholar
  26. 26.
    Sgarbas, K.N., Fakotakis, N.D., Kokkinakis, G.K.: Incremental construction of compact acyclic NFAs. In: 39th Annual Meeting of the Association for Computational Linguistics, pp. 482–489. Association for Computational Linguistics (2001)Google Scholar
  27. 27.
    Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Sys. Tech. J. 28(1), 59–98 (1949)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yu, S.: Cover automata for finite language. Bull. EATCS 92, 65–74 (2007)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hermann Gruber
    • 1
  • Markus Holzer
    • 2
  • Sebastian Jakobi
    • 2
  1. 1.Knowledgepark AGMunichGermany
  2. 2.Institut für Informatik, Universität GiessenGiessenGermany

Personalised recommendations