Boron pp 219-239 | Cite as

Noncovalent Interactions of Heteroboranes

  • Robert Sedlak
  • Jindřich Fanfrlík
  • Adam Pecina
  • Drahomír Hnyk
  • Pavel Hobza
  • Martin LepšíkEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 20)


This chapter deals with noncovalent interactions between heteroboranes and their various organic or biomolecular partners. At first, the physical essence of noncovalent interactions in general is discussed. Focusing then on boron clusters, their contacts are discussed based on the unusual electron distribution within the boron hydride cages and especially around the heteroatoms (i.e. non-boron atoms incorporated in the cluster framework) or the substituents replacing the terminal hydrogens. The bare (i.e. not linked to hydrogen) heteroatoms within the cage bear prevailingly a partial positive charge. This results in an opposite direction of the compound dipole moments (as proved experimentally), contrary to what would be expected from the electronegativity concept.

The anisotropic distribution of the electron density around the heteroatoms gives rise to the so-called σ-holes, regions of positive electrostatic potential (ESP). This can be viewed as a driving force for noncovalent interactions with, e.g. organic aromatics or Lewis bases. Examples of σ-hole bonding of heteroboranes incorporated in the cluster cages are chalcogen or pnictogen bonding. Heteroatoms as exo-substituents can also be centers of σ-hole bonding, in this case halogen bonding. An important characteristics of the σ-hole bonding is that it can be tuned, e.g. by other exo-substituents or by the point of attachment to the cage – whether the exo-halogens are bonded to boron or carbon atoms within a particular cluster.

Apart from the σ-hole bonding, the hydride character of the terminal hydrogens of the heteroboranes is responsible for forming unique dihydrogen H ⋯ H bonds, which provides the essence of heteroborane noncovalent interactions with various organic, inorganic and molecules of biological interest. The influence of various molecular shapes on the strength of these nonclassical contacts is discussed. Likewise, the choices of optimal mathematical models and computational protocols to study the crucial energy terms contributing to these interactions are reviewed.


Noncovalent Interaction Boron Neutron Capture Therapy Halogen Bond Multipole Moment Boron Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Plesek J (1992) Potential applications of the boron cluster compounds. Chem Rev 92:269–278CrossRefGoogle Scholar
  2. 2.
    Gruner B, Rais J, Selucky P, Lucanıkova M (2011) Recent progress in extraction agents based on cobalt bis(dicarbollides) for partitioning of radionuclides from high level nuclear waste. In: Hosmane NS (ed) Boron science-new technologies and applications. CRC Press, Boca Raton/New York, pp 463–490Google Scholar
  3. 3.
    Hawthorne MF (1993) The role of chemistry in the development of boron neutron-capture therapy of cancer. Angew Chem Int Ed 32:950–984CrossRefGoogle Scholar
  4. 4.
    Grimes RN (2002) Putting small metallacarboranes to work: a review. Collect Czech Chem C 67:728–750CrossRefGoogle Scholar
  5. 5.
    Grimes RN (2000) Metallacarboranes in the new millennium. Coord Chem Rev 200:773–811CrossRefGoogle Scholar
  6. 6.
    Issa F, Kassiou M, Rendina LM (2011) Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem Rev 111:5701–5722CrossRefGoogle Scholar
  7. 7.
    Scholz M, Hey-Hawkins E (2011) Carbaboranes as pharmacophores: properties, synthesis, and application strategies. Chem Rev 111:7035–7062CrossRefGoogle Scholar
  8. 8.
    Farras P, Juarez-Perez EJ, Lepsik M, Luque R, Nunez R, Teixidor F (2012) Metallacarboranes and their interactions: theoretical insights and their applicability. Chem Soc Rev 41:3445–3463CrossRefGoogle Scholar
  9. 9.
    Sivaev IB, Bregadze VV (2009) Polyhedral boranes for medical applications: current status and perspectives. Eur J Inorg Chem 2009:1433–1450CrossRefGoogle Scholar
  10. 10.
    Juárez-Pérez EJ, Núñez R, Viñas C, Sillanpää R, Teixidor F (2010) The role of C–H · · · H–B interactions in establishing rotamer configurations in metallabis(dicarbollide) systems. Eur J Inorg Chem 2010:2385–2392CrossRefGoogle Scholar
  11. 11.
    Planas JG, Vinas C, Teixidor F, Comas-Vives A, Ujaque G, Lledos A, Light ME, Hursthouse MB (2005) Self-assembly of mercaptane-metallacarborane complexes by an unconventional cooperative effect: a C-H · · · S-H, · · ·H-B hydrogen/dihydrogen bond interaction. J Am Chem Soc 127:15976–15982CrossRefGoogle Scholar
  12. 12.
    Fanfrlik J, Prada A, Padelkova Z, Pecina A, Machacek J, Lepsik M, Holub J, Ruzicka A, Hnyk D, Hobza P (2014) The dominant role of chalcogen bonding in the crystal packing of 2D/3D aromatics. Angew Chem Int Edit 53:10139–10142CrossRefGoogle Scholar
  13. 13.
    Bregadze VI (1992) Dicarba-closo-dodecaboranes C2B10H12 and their derivatives. Chem Rev 92:209–223CrossRefGoogle Scholar
  14. 14.
    Lesnikowski ZJ (2007) Boron units as pharmacophores – new applications and opportunities of boron cluster chemistry. Collect Czech Chem C 72:1646–1658CrossRefGoogle Scholar
  15. 15.
    Scholz M, Bensdorf K, Gust R, Hey-Hawkins E (2009) Asborin: the carbaborane analogue of aspirin. ChemMedChem 4:746–748CrossRefGoogle Scholar
  16. 16.
    Brynda J, Mader P, Šícha V, Fábry M, Poncová K, Bakardiev M, Grüner B, Cígler P, Řezáčová P (2013) Carborane-based carbonic anhydrase inhibitors. Angew Chem Int Ed 52:13760–13763CrossRefGoogle Scholar
  17. 17.
    Fujii S, Masuno H, Taoda Y et al (2011) Boron cluster-based development of potent nonsecosteroidal vitamin D receptor ligands: direct observation of hydrophobic interaction between protein surface and carborane. J Am Chem Soc 133:20933–20941CrossRefGoogle Scholar
  18. 18.
    King RB (2001) Three-dimensional aromaticity in polyhedral boranes and related molecules. Chem Rev 101:1119–1152CrossRefGoogle Scholar
  19. 19.
    Campanelli AR, Domenicano A, Hnyk D (2015) Transmission of electronic substituent effects across the 1,12-dicarba- closo -dodecaborane cage: a computational study based on structural variation, atomic charges, and 13C NMR chemical shifts. J Phys Chem A 119:205–214CrossRefGoogle Scholar
  20. 20.
    Pecina A, Lepšík M, Řezáč J, Brynda J, Mader P, Řezáčová P, Hobza P, Fanfrlík J (2013) QM/MM calculations reveal the different nature of the interaction of two carborane-based sulfamide inhibitors of human carbonic anhydrase II. J Phys Chem A 119:1388–1395CrossRefGoogle Scholar
  21. 21.
    Scholz M, Steinhagen M, Heiker JT, Beck-Sickinger AG, Hey-Hawkins E (2011) Asborin inhibits aldo/keto reductase 1A1. ChemMedChem 6:89–93CrossRefGoogle Scholar
  22. 22.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  23. 23.
    Stewart RF (1979) On the mapping of electrostatic properties from bragg diffraction data. Chem Phys Lett 65:335–342CrossRefGoogle Scholar
  24. 24.
    Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials: reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems. Springer, New YorkCrossRefGoogle Scholar
  25. 25.
    Fanfrlik J, Lepsik M, Horinek D, Havlas Z, Hobza P (2006) Interaction of carboranes with biomolecules: formation of dihydrogen bonds. Chem Phys Chem 7:1100–1105Google Scholar
  26. 26.
    Sedlák R, Fanfrlík J, Hnyk D, Hobza P, Lepšík M (2010) Interactions of boranes and carboranes with aromatic systems: CCSD(T) complete basis set calculations and DFT-SAPT analysis of energy components. J Phys Chem A 114:11304–11311CrossRefGoogle Scholar
  27. 27.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. J Mol Model 13:291–296CrossRefGoogle Scholar
  28. 28.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794CrossRefGoogle Scholar
  29. 29.
    Pecina A, Lepsik M, Hnyk D, Hobza P, Fanfrlik J (2015) Chalcogen and pnicogen bonds in complexes of neutral icosahedral and bicapped square-antiprismatic heteroboranes. J Phys Chem A 119:1388–1395CrossRefGoogle Scholar
  30. 30.
    Chevrot G, Schurhammer R, Wipff G (2006) Surfactant behavior of “ellipsoidal” dicarbollide anions: a molecular dynamics study. J Phys Chem B 110:9488–9498CrossRefGoogle Scholar
  31. 31.
    Matejicek P, Cigler P, Prochazka K, Kral V (2006) Molecular assembly of metallacarboranes in water: light scattering and microscopy study. Langmuir 22:575–581CrossRefGoogle Scholar
  32. 32.
    Gassin P-M, Girard L, Martin-Gassin G, Brusselle D, Jonchère A, Diat O, Viñas C, Teixidor F, Bauduin P (2015) Surface activity and molecular organization of metallacarboranes at the air–water interface revealed by nonlinear optics. Langmuir 31:2297–2303CrossRefGoogle Scholar
  33. 33.
    Fanfrlík J, Brynda J, Řezáč J, Hobza P, Lepšík M (2008) Interpretation of protein/ligand crystal structure using QM/MM calculations: case of HIV-1 protease/metallacarborane complex. J Phys Chem B 112:15094–15102CrossRefGoogle Scholar
  34. 34.
    Desiraju GR, Steiner T (2001) The weak hydrogen bond: In structural chemistry and biology. Oxford University Press/International Union of Crystallography, OxfordCrossRefGoogle Scholar
  35. 35.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945CrossRefGoogle Scholar
  36. 36.
    Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD (2001) Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293:1119–1122CrossRefGoogle Scholar
  37. 37.
    Krapf S, Koslowski T, Steinbrecher T (2010) The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions. Phys Chem Chem Phys 12:9516–9525CrossRefGoogle Scholar
  38. 38.
    Warshel A (2002) Molecular dynamics simulations of biological reactions. Acc Chem Res 35:385–395CrossRefGoogle Scholar
  39. 39.
    Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions I. J Chem Phys 23:1833–1840CrossRefGoogle Scholar
  40. 40.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecularinteractions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926Google Scholar
  41. 41.
    Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fockapproximation. Int J Quantum Chem 10:325–340Google Scholar
  42. 42.
    Mo Y, Gao J, Peyerimhoff SD (2000) Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach. J Chem Phys 112:5530–5538CrossRefGoogle Scholar
  43. 43.
    Stone AJ, Misquitta AJ (2009) Charge-transfer in symmetry-adapted perturbation theory. Chem Phys Lett 473:201–205CrossRefGoogle Scholar
  44. 44.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der waals complexes. Chem Rev 94:1887–1930Google Scholar
  45. 45.
    Řezáč J, de la Lande A (2015) Robust, basis-set independent method for the evaluation of charge-transfer energy in noncovalent complexes. J Chem Theory Comput 11:528–537CrossRefGoogle Scholar
  46. 46.
    Fanfrlik J, Hnyk D, Lepsik M, Hobza P (2007) Interaction of heteroboranes with biomolecules – part 2. The effect of various metal vertices and exo-substitutions. Phys Chem Chem Phys 9:2085–2093Google Scholar
  47. 47.
    Dixon DA, Dobbs KD, Valentini JJ (1994) Amide-water and amide-amide hydrogen bond strengths. J Phys Chem 98:13435–13439CrossRefGoogle Scholar
  48. 48.
    Gonnade RG, Shashidhar MS, Bhadbhade MM (2012) “Halogen bonding” interactionsin molecular crystals: from early recognition to recent developments. J Indian I Sci 87:149–165Google Scholar
  49. 49.
    Arunan E, Desiraju GR, Klein RA et al (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83:1637–1641Google Scholar
  50. 50.
    Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264CrossRefGoogle Scholar
  51. 51.
    Taylor R, Kennard O (1982) Crystallographic evidence for the existence of CH · · · O, CH · · · N and CH · · · Cl hydrogen bonds. J Am Chem Soc 104:5063–5070CrossRefGoogle Scholar
  52. 52.
    Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250CrossRefGoogle Scholar
  53. 53.
    Jeffrey GA (2003) Hydrogen-bonding: an update. Crystallogr Rev 9:135–176CrossRefGoogle Scholar
  54. 54.
    Steiner T (2003) C–H · · · O hydrogen bonding in crystals. Crystallogr Rev 9:177–228CrossRefGoogle Scholar
  55. 55.
    Bella J, Berman HM (1996) Crystallographic evidence for Cα–H · · · O = C hydrogen bonds in a collagen triple helix. J Mol Biol 264:734–742CrossRefGoogle Scholar
  56. 56.
    Berger I, Egli M, Rich A (1996) Inter-strand CH…O hydrogen bonds stabilizing four-stranded intercalated molecules: stereoelectronic effects of O4’ in cytosine-rich DNA. Proc Natl Acad Sci 93:12116–12121CrossRefGoogle Scholar
  57. 57.
    Nishio M (2004) CH/π hydrogen bonds in crystals. CrystEngComm 6:130–158CrossRefGoogle Scholar
  58. 58.
    Tatko CD, Waters ML (2004) Comparison of C-H…pi and hydrophobic interactions in a beta-hairpin peptide: impact on stability and specificity. J Am Chem Soc 126:2028–2034CrossRefGoogle Scholar
  59. 59.
    Brandl M, Weiss MS, Jabs A, Sühnel J, Hilgenfeld R (2001) C-H…pi-interactions in proteins. J Mol Biol 307:357–377CrossRefGoogle Scholar
  60. 60.
    Yamakawa M, Yamada I, Noyori R (2001) CH/π attraction: the origin of enantioselectivity in transfer hydrogenation of aromatic carbonyl compounds catalyzed by chiral η6-arene-ruthenium(II) complexes. Angew Chem Int Ed 40:2818–2821CrossRefGoogle Scholar
  61. 61.
    Steiner T, Koellner G (2001) Hydrogen bonds with pi-acceptors in proteins: frequencies and role in stabilizing local 3D structures. J Mol Biol 305:535–557CrossRefGoogle Scholar
  62. 62.
    Tóth G, Watts CR, Murphy RF, Lovas S (2001) Significance of aromatic-backbone amide interactions in protein structure. Proteins 43:373–381CrossRefGoogle Scholar
  63. 63.
    Fox MA, Hughes AK (2004) Cage C-H⋯X interactions in solid-state structures of icosahedral carboranes. Coord Chem Rev 248:457–476CrossRefGoogle Scholar
  64. 64.
    Beall H (1977) The structure of 1-N, N-dimethylthiocarbamoyl-1,2-dicarba-closo-dodecaborane (12) a propos the bonding of carbonyl groups to the carborane cage. Inorg Nucl Chem Lett 13:111–114CrossRefGoogle Scholar
  65. 65.
    Blanch RJ, Williams M, Fallon GD, Gardiner MG, Kaddour R, Raston CL (1997) Supramolecular complexation of 1,2-dicarbadodecaborane(12). Angew Chem Int Ed Engl 36:504–506CrossRefGoogle Scholar
  66. 66.
    Raston CL, Cave GW (2004) Nanocage encapsulation of two ortho-carborane molecules. Chem-Eur J 10:279–282CrossRefGoogle Scholar
  67. 67.
    Hamilton EJ, Kultyshev RG, Du B, Meyers EA, Liu SM, Hadad CM, Shore SG (2006) A stacking interaction between a bridging hydrogen atom and aromatic pi density in the n-B18H22-benzene system. Chem-Eur J 12:2571–2578CrossRefGoogle Scholar
  68. 68.
    DeLano WL (2002) The PyMOL molecular graphics system. Oxford University Press/International Union of Crystallography, OxfordGoogle Scholar
  69. 69.
    Custelcean R, Jackson JE (2001) Dihydrogen bonding: structures, energetics, and dynamics. Chem Rev 101:1963–1980CrossRefGoogle Scholar
  70. 70.
    Richardson TB, deGala S, Crabtree RH, Siegbahn PEM (1995) Unconventional hydrogen bonds: intermolecular B-H⋯H-N interactions. J Am Chem Soc 117:12875–12876CrossRefGoogle Scholar
  71. 71.
    Campbell JP, Hwang J-W, Young VG, Von Dreele RB, Cramer CJ, Gladfelter WL (1998) Crystal engineering using the unconventional hydrogen bond. Synthesis, structure, and theoretical investigation of cyclotrigallazane. J Am Chem Soc 120:521–531CrossRefGoogle Scholar
  72. 72.
    Gusev DG, Lough AJ, Morris RH (1998) New polyhydride anions and proton-hydride hydrogen bonding in their ion pairs. X-ray crystal structure determinations of Q[mer-Os(H)3(CO)(PiPr3)2], Q = [K(18-crown-6)] and Q = [K(1-aza-18-crown-6)]. J Am Chem Soc 120:13138–13147CrossRefGoogle Scholar
  73. 73.
    Lee J, Peris E, Rheingold A, Crabtree R (1994) An unusual type of H…H interaction – Ir-H…h-O and Ir-H…h-N hydrogen-bonding and its involvement in sigma-bond metathesis. J Am Chem Soc 116:11014–11019CrossRefGoogle Scholar
  74. 74.
    Ayllón JA, Gervaux C, Sabo-Etienne S, Chaudret B (1997) First NMR observation of the intermolecular dynamic proton transfer equilibrium between a hydride and coordinated dihydrogen: (dppm)2HRuH · · · H − OR = [(dppm)2HRu(H2)] + (OR)-. Organometallics 16:2000–2002CrossRefGoogle Scholar
  75. 75.
    Epstein LM, Shubina ES (1998) Proton transfer and hydrogen bonding with transition metal atoms and hydride hydrogen by IR and NMR studies. Berich Bunsen Gesell 102:359–363CrossRefGoogle Scholar
  76. 76.
    Custelcean R, Jackson JE (1998) Topochemical control of covalent bond formation by dihydrogen bonding. J Am Chem Soc 120:12935–12941CrossRefGoogle Scholar
  77. 77.
    Karki K, Gabel D, Roccatano D (2012) Structure and dynamics of dodecaborate clusters in water. Inorg Chem 51:4894–4896CrossRefGoogle Scholar
  78. 78.
    Mader P, Pecina A, Cigler P, Lepsik M, Sicha V, Hobza P, Gruener B, Fanfrlik J, Brynda J, Rezacova P (2014) Carborane-based carbonic anhydrase inhibitors: insight into CAII/CAIX specificity from a high-resolution crystal structure, modeling, and quantum chemical calculations. Biomed Res Int 2014:389869CrossRefGoogle Scholar
  79. 79.
    Bent HA (1968) Structural chemistry of donor-acceptor interactions. Chem Rev 68:587–648CrossRefGoogle Scholar
  80. 80.
    Kolář M, Hostaš J, Hobza P (2014) The strength and directionality of a halogen bond are co-determined by the magnitude and size of the σ-hole. Phys Chem Chem Phys 16:9987–9996CrossRefGoogle Scholar
  81. 81.
    Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model 17:3309–3318CrossRefGoogle Scholar
  82. 82.
    Fanfrlík J, Kolář M, Kamlar M et al (2013) Modulation of aldose reductase inhibition by halogen bond tuning. ACS Chem Biol 8:2484–2492CrossRefGoogle Scholar
  83. 83.
    Hardegger LA, Kuhn B, Spinnler B et al (2011) Systematic investigation of halogen bonding in protein–ligand interactions. Angew Chem Int Ed 50:314–318CrossRefGoogle Scholar
  84. 84.
    Epstein LM, Shubina ES, Bakhmutova EV, Saitkulova LN, Bakhmutov VI, Chistyakov AL, Stankevich IV (1998) Unusual hydrogen bonds with a hydride atom in boron hydrides acting as proton acceptor. Spectroscopic and theoretical studies. Inorg Chem 37:3013–3017CrossRefGoogle Scholar
  85. 85.
    Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110:5023–5063CrossRefGoogle Scholar
  86. 86.
    Sinnokrot MO, Valeev EF, Sherrill CD (2002) Estimates of the Ab initio limit for π − π interactions: the benzene dimer. J Am Chem Soc 124:10887–10893CrossRefGoogle Scholar
  87. 87.
    Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem Phys Lett 286:243–252CrossRefGoogle Scholar
  88. 88.
    Lee EC, Kim D, Jurecka P, Tarakeshwar P, Hobza P, Kim KS (2007) Understanding of assembly phenomena by aromatic-aromatic interactions: benzene dimer and the substituted systems. J Phys Chem A 111:3446–3457CrossRefGoogle Scholar
  89. 89.
    Bartlett RJ, Musiał M (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79:291–352CrossRefGoogle Scholar
  90. 90.
    Janowski T, Ford AR, Pulay P (2010) Accurate correlated calculation of the intermolecular potential surface in the coronene dimer. Mol Phys 108:249–257CrossRefGoogle Scholar
  91. 91.
    Pitonak M, Neogrady P, Hobza P (2010) Three- and four-body nonadditivities in nucleic acid tetramers: a CCSD(T) study. Phys Chem Chem Phys 12:1369–1378CrossRefGoogle Scholar
  92. 92.
    Jurečka P, Šponer J, Černý J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis Set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993CrossRefGoogle Scholar
  93. 93.
    Rode M, Sadlej J, Moszynski R, Wormer PES, van der Avoird A (1999) The importance of high-order correlation effects for the CO–CO interaction potential. Chem Phys Lett 314:326–332CrossRefGoogle Scholar
  94. 94.
    Hesselmann A, Jansen G (2003) The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange-correlation potential. Phys Chem Chem Phys 5:5010–5014CrossRefGoogle Scholar
  95. 95.
    Hesselmann A, Jansen G, Schütz M (2005) Density functional theory symmetry adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. J Chem Phys 122:014103CrossRefGoogle Scholar
  96. 96.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  97. 97.
    Grüning M, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2001) Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region. J Chem Phys 114:652–660CrossRefGoogle Scholar
  98. 98.
    Sala FD, Görling A (2001) Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules. J Chem Phys 115:5718–5732CrossRefGoogle Scholar
  99. 99.
    Biedermannova L, Riley KE, Berka K, Hobza P, Vondrasek J (2008) Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Phys Chem Chem Phys 10:6350–6359CrossRefGoogle Scholar
  100. 100.
    Kolar M, Berka K, Jurecka P, Hobza P (2010) On the reliability of the AMBER force field and its empirical dispersion contribution for the description of noncovalent complexes. Chem Phys Chem 11:2399–2408Google Scholar
  101. 101.
    Riley KE, Pitoňák M, Černý J, Hobza P (2010) On the structure and geometry of biomolecular binding motifs (hydrogen-bonding, stacking, X − H · · · π): WFT and DFT calculations. J Chem Theory Comput 6:66–80CrossRefGoogle Scholar
  102. 102.
    Adhikari U, Scheiner S (2012) Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. Chem Phys Lett 532:31–35CrossRefGoogle Scholar
  103. 103.
    Hesselmann A, Jansen G (2002) First-order intermolecular interaction energies from Kohn-Sham orbitals. Chem Phys Lett 357:464–470CrossRefGoogle Scholar
  104. 104.
    Hesselmann A, Jansen G (2002) Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn-Sham density functional theory. Chem Phys Lett 362:319–325CrossRefGoogle Scholar
  105. 105.
    Hesselmann A, Jansen G (2003) Intermolecular dispersion energies from time-dependent density functional theory. Chem Phys Lett 367:778–784CrossRefGoogle Scholar
  106. 106.
    Hesselmann A (2011) Comparison of intermolecular interaction energies from SAPT and DFT including empirical dispersion contributions. J Phys Chem A 115:11321–11330CrossRefGoogle Scholar
  107. 107.
    Vydrov OA, Van Voorhis T (2009) Nonlocal van der waals density functional made simple. Phys Rev Lett 103:063004CrossRefGoogle Scholar
  108. 108.
    Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  109. 109.
    Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406CrossRefGoogle Scholar
  110. 110.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  111. 111.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104CrossRefGoogle Scholar
  112. 112.
    Jurečka P, Černý J, Hobza P, Salahub D (2007) Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with Ab initio quantum mechanics calculations. J Comput Chem 28:555–569CrossRefGoogle Scholar
  113. 113.
    Goerigk L, Kruse H, Grimme S (2011) Benchmarking density functional methods against the S66 and S66x8 datasets for Non-covalent interactions. Chem Phys Chem 12:3421–3433Google Scholar
  114. 114.
    Sedlak R, Janowski T, Pitoňák M, Řezáč J, Pulay P, Hobza P (2013) Accuracy of quantum chemical methods for large noncovalent complexes. J Chem Theory Comput 9:3364–3374CrossRefGoogle Scholar
  115. 115.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  116. 116.
    Lyssenko KA, Antipin MY, Lebedev VN (1998) Topological analysis of the electron density distribution in the crystal of 8,9,10,12-tetrafluoro-o-carborane on the basis of the high-resolution X-ray diffraction data at 120 K. Inorg Chem 37:5834–5843CrossRefGoogle Scholar
  117. 117.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138CrossRefGoogle Scholar
  118. 118.
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restrains for deriving atomic charges – the RESP model. J Phys Chem 97:10269–10280CrossRefGoogle Scholar
  119. 119.
    Dávalos JZ, González J, Ramos R, Hnyk D, Holub J, Santaballa JA, Canle-L M, Oliva JM (2014) Acidities of closo-1-COOH-1,7-C2B10H11 and amino acids based on icosahedral carbaboranes. J Phys Chem A 118:2788–2793Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Robert Sedlak
    • 1
  • Jindřich Fanfrlík
    • 1
  • Adam Pecina
    • 1
  • Drahomír Hnyk
    • 2
  • Pavel Hobza
    • 1
    • 3
  • Martin Lepšík
    • 1
    Email author
  1. 1.Institute of Organic Chemistry and Biochemistry (IOCB)Academy of Sciences of the Czech Republic, v.v.i. and Gilead Sciences and IOCB Research CenterPrague 6Czech Republic
  2. 2.Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i.Husinec-ŘežCzech Republic
  3. 3.Department of Physical ChemistryRegional Center of Advanced Technologies and Materials, Palacký UniversityOlomoucCzech Republic

Personalised recommendations