A Compression App for Continuous Probability Distributions

  • Michael Bungert
  • Holger Hermanns
  • Reza Pulungan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9259)


This paper presents an Android app supporting the construction and compact representation of continuous probability distributions. Its intuitive drag-and-drop approach considerably eases an often delicate modelling step in model-based performance and dependability evaluation, stochastic model checking, as well in the quantitative study of system-level concurrency phenomena. To compress the size of the representations, the app connects to a web service that implements an efficient compression algorithm, which constitutes the core technological innovation behind the approach. The app enables interested users to perform rapid experiments with this technology. From a more general perspective, this approach might pioneer how web service and app technology can provide a convenient vehicle for promoting and evaluating computer aided verification innovations.


Model Check Binary Operator Compression Algorithm Erlang Distribution Statistical Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS 2014). LNCS, vol. 8414, pp. 285–305. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  2. 2.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation and model checking join forces. Commun. ACM 53(9), 76–85 (2010). SeptCrossRefGoogle Scholar
  4. 4.
    Benlian, A., Hess, T., Buxmann, P.: Drivers of SaaS-adoption an empirical study of different application types. Business & Information Systems Engineering 1(5), 357–369 (2009)CrossRefGoogle Scholar
  5. 5.
    Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Depend. Sec. Comput. 7(2), 128–143 (2010)CrossRefGoogle Scholar
  6. 6.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of Applied Probability 31, 59–75 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Chaki, S., Schallhart, C., Veith, H.: Verification across intellectual property boundaries. ACM Trans. Softw. Eng. Methodol. 22(2), 15 (2013)CrossRefGoogle Scholar
  8. 8.
    Courtney, T., Gaonkar, S., Keefe, K., Rozier, E., Sanders, W.H.: Möbius 2.3: an extensible tool for dependability, security, and performance evaluation of large and complex system models. In: DSN, pp. 353–358. IEEE (2009)Google Scholar
  9. 9.
    Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Horváth, A., Telek, M.: PhFit: a general phase-type fitting tool. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 82–91. Springer, Heidelberg (2002) Google Scholar
  12. 12.
    Johnson, M.A., Taaffe, M.R.: The denseness of phase distributions. School of Industrial Engineering Research Memoranda, pp. 88–20. Purdue University (1988)Google Scholar
  13. 13.
    Kaplan, F.: Are gesture-based interfaces the future of human computer interaction? In: ICMI 2009, pp. 239–240. ACM (2009)Google Scholar
  14. 14.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: an Algorithmic Approach. Dover, Baltimore (1981) zbMATHGoogle Scholar
  16. 16.
    Pulungan, R., Hermanns, H.: Acyclic minimality by construction–almost. In: QEST, pp. 63–72. IEEE Computer Society (2009)Google Scholar
  17. 17.
    Pulungan, R., Hermanns, H.: A construction and minimization service for continuous probability distributions. STTT 17(1), 77–90 (2015)CrossRefGoogle Scholar
  18. 18.
    Thümmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting with the EM algorithm. IEEE Trans. Depend. Sec. Comput. 3(3), 245–258 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael Bungert
    • 1
  • Holger Hermanns
    • 1
  • Reza Pulungan
    • 2
  1. 1.Saarland University – Computer ScienceSaarbrückenGermany
  2. 2.Jurusan Ilmu Komputer Dan ElektronikaUniversitas Gadjah MadaYogyakartaIndonesia

Personalised recommendations