Bayesian Statistical Analysis for Performance Evaluation in Real-Time Control Systems

  • Pontus BoströmEmail author
  • Mikko Heikkilä
  • Mikko Huova
  • Marina Waldén
  • Matti Linjama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9259)


This paper presents a method for statistical analysis of hybrid systems affected by stochastic disturbances, such as random computation and communication delays. The method is applied to the analysis of a computer controlled digital hydraulic power management system, where such effects are present. Bayesian inference is used to perform parameter estimation and we use hypothesis testing based on Bayes factors to compare properties of different variants of the system to assess the impact of different random disturbances. The key idea is to use sequential sampling to generate only as many samples from the models as needed to achieve desired confidence in the result.


Pressure Peak Posteriori Probability Sequential Probability Ratio Test Simulation Trace Statistical Model Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool for schedulability analysis and code generation of real-time systems. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  2. 2.
    Boström, P., Alexeev, P., Heikkilä, M., Huova, M., Waldén, M., Linjama, M.: Analysis of real-time properties of a digital hydraulic power management system. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 33–47. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Boström, P., Heikkilä, M., Huova, M., Waldén, M., Linjama, M.: Bayesian statistical analysis for performance evaluation in real-time control systems. Technical Report, 1136, TUCS (2015)Google Scholar
  4. 4.
    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J., Wang, Z.: Statistical model checking for networks of priced timed automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. 5.
    Cervin, A., Henriksson, D., Lincoln, B., Eker, J., Årzén, K.E.: How does control timing affect performance? - analysis and simulation of timing using Jitterbug and truetime. IEEE Control Syst. Mag. 23(3), 16–30 (2003)CrossRefGoogle Scholar
  6. 6.
    David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.: Optimizing control strategy using statistical model checking. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman & Hall/CRC, New York (2004) zbMATHGoogle Scholar
  9. 9.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  10. 10.
    Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A.: Statistical model checking for complex stochastic models in systems biology. Technical Report, CMU-CS-09-110, School of Computer Science, Carnegie Mellon University (2009)Google Scholar
  11. 11.
    Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  12. 12.
    Karvonen, M., Heikkilä, M., Huova, M., Linjama, M.: Analysis by simulation of different control algorithms of a digital hydraulic two-actuator system. Int. J. Fluid Power 15(1), 33–44 (2014). MarCrossRefGoogle Scholar
  13. 13.
    Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lincoln, B., Cervin, A.: Jitterbug: a tool for analysis of real-time control performance. In: 41st IEEE Conference on Decision and Control, IEEE (2002)Google Scholar
  15. 15.
    Linjama, M., Huhtala, K.: Digital pump-motor with independent outlets. In: The 11th Scandinavian International Conference on Fluid Power, SICFP 2009, Linköping, Sweden (2009)Google Scholar
  16. 16.
    Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with focus on time-bounded properties. Inf. Comput. 204, 1368–1409 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to stateflow/simulink verification. Formal Methods Syst. Des. 43, 338–367 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pontus Boström
    • 1
    Email author
  • Mikko Heikkilä
    • 2
  • Mikko Huova
    • 2
  • Marina Waldén
    • 1
  • Matti Linjama
    • 2
  1. 1.Åbo Akademi UniversityTurkuFinland
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations