A Position Paper on Predicting the Onset of Nocturnal Enuresis Using Advanced Machine Learning

  • Paul Fergus
  • Abir Hussain
  • Dhiya Al-Jumeily
  • Naeem Radi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9226)


Bed-wetting during normal sleep in children and young people has a significant impact on the child and their parents. The condition is known as nocturnal enuresis and its underlying cause has been subject to different explanatory factors that include, neurological, urological, sleep, genetic and psychosocial influences. Several clinical and technological interventions for managing nocturnal enuresis exist that include the clinician’s opinions, pharmacology interventions, and alarm systems. However, most have failed to produce any convincing results. Clinical information is often subjective and often inaccurate, the use of desmopressin and tricyclic antidepressants only report between 20 % and 40 % success, and alarms only a 50 % success fate. This position paper posits an alternative research idea concerned with the early detection of impending involuntary bladder release. The proposed framework is a measurement and prediction system that processes moisture and bladder volume data from sensors fitted into undergarments that are used by patients suffering with nocturnal enuresis. The proposed framework represents a level of sophistication in nocturnal enuresis treatment not previously considered.


Nocturnal enuresis Bedwetting Machine learning Classification Neural networks Sensors 


  1. Abrams, P., Andersson, K.E., Birder, L., Brubaker, L., Cardozo, L., et al.: Fourth international consultation on incontinence recommendations of the international scientific committee: evaluation and treatment of urinary incontinence, pelvic organ prolapse and fecal incontinence. Neurourol. Urodyn. 29(1), 213–240 (2010)CrossRefGoogle Scholar
  2. Bettina, E., Shapira, E., Dahlen, P.: Therapeutic treatment protocol for enuressi using and enuresis alarm. J. Couns. Dev. 88(2), 246–252 (2010)CrossRefGoogle Scholar
  3. Bradley, C.S., Brown, J.S., van Den Eeden, S.K., Schembri, M., Ragins, A., Thom, D.H.: Urinary incontinence self-report questions: reproducability and agreement with bladder diary. Int. J. Urogynedol, 22(12), 1565–1571 (2011)CrossRefGoogle Scholar
  4. Butler, R.J.: Nocturnal Enuresis. the Child’s Experience, p. 192, Butterworth Heinemann, Oxford (1994)Google Scholar
  5. Butler, R.J.: Childhood nocturnal enuresis: developing a conceptual framework. Clin. Psychol. Rev. 24(8), 909–931 (2004)CrossRefGoogle Scholar
  6. Campbell, L.K., Cox, D.L., Borowitz, S.M.: Elimination disorders. In: Handbook of Pediatric Psychology, p. 808, Guilford Press, New York (2009)Google Scholar
  7. Can, G., Topbas, M., Okten, A., Kizil, M.: Child abuse as a result of enuresis. Pediatrics Int. 46(1), 64–66 (2004)CrossRefGoogle Scholar
  8. Culbert, T.P., Banez, G.A.: Wetting the bed: integrative approaches to nocturnal enuresis. Explore 4(3), 215–220 (2008)CrossRefGoogle Scholar
  9. Darling, J.C.: Management of nocturnal enuresis. Trends Urol. Gynaecol. Sexual Health 15(3), 18–22 (2010)CrossRefGoogle Scholar
  10. De Bruyne, E., van Hoecke, E., van Gompel, K., Verbeken, S., Hoebeke, P., Vande Walle, J.: Problem behaviour, parental stress and enuresis. J. Urology 182(4), 2015–2021 (2009)CrossRefGoogle Scholar
  11. Dhondt, K., Raes, A., Hoebeke, P., van Laecke, E., van Herzeele, C., Vande Walle, J.: Abnormal sleep architecture and refractory nocturnal enuresis. J. Urology, 182(4), 1961–1965 (2009)CrossRefGoogle Scholar
  12. Fatah, D.A., Shaker, H., Ismail, M., Ezzat, M.: Nocturia polyuria and nocturnal arginine vasopression (AVP): a key factor in the pathophysiology of monosymptomatic nocturnal enuresis. Neurourol. Urodyn. 28(6), 506–509 (2009)CrossRefGoogle Scholar
  13. Glazener, C.M., Evans, J.H.: Alarm interventions for nocturnal enuresis in children (Cochrane Review). The Cochrane Library (2007)Google Scholar
  14. Glazener, C.M., Evans, J.M.: Desmopressin for nocturnal enuresis. cochrane database systematic review, CD002112 (2002)Google Scholar
  15. Gupta, N.: Inside bluetooth low energy. IEEE Trans. Instrum. Measur. 210 (2013)Google Scholar
  16. Haykin, L.: Nonlinear adaptive prediction of nonstationary signals. IEEE Trans. Signal Process. 43(2), 526–535 (1995)CrossRefGoogle Scholar
  17. Kennea, N., Evans, J.: Drug treatment of nocturnal enuresis. Paediatr. Perinat. Drug Therapy 4(1), 12–18 (2000)CrossRefGoogle Scholar
  18. Lottmann, H.B., Alova, I.: Primary monosymptomatic nocturnal enuresis in children and adolescents. Int. J. Clin. Pract. 61(s155), 8–16 (2007)CrossRefGoogle Scholar
  19. Milsom, I., Coyne, K.S., Nicholson, S., Kvasz, M., Chen, C., Wein, A.J.: Global Prevalence and Economic Burden of Urgency Urinary Incontinence: A Systematic Review. Eur. Urol. (2013, in Press)Google Scholar
  20. Nalbantoglu, B., Yazici, C.M., Nalbantoglu, A., Guzel, S., Topcu, B., Guzel, E.C et al.: Copeptin as a Novel Biomarker in Nocturnal Enuresis. Pediatr. Urol. (2013a, in Press)Google Scholar
  21. Nalbantoglu, B., Yazici, C.M., Nalbantoglu, A., Guzel, S., Topcu, B., Guzel, E.C et al.: Copeptin as a Novel Biomarker in Nocturnal Enuresis. Pediatr. Urol. (2013b, in Press)Google Scholar
  22. Nilsson, H., Gulliksson, J. An incontinence alarm solution utilizing RFID-based sensor technology. In: IEEE International Conference on RFID-Technologies and Applications, pp. 359–363 (2011)Google Scholar
  23. Porth, C.M.:. Essentials of pathophysiology: concepts of altered health states, p. 1149 (2007)Google Scholar
  24. Prieto, L., Castro, D., Esteban, M., Salinas, J., Jimenez, M., Mora, A.: Descriptive epidemiological study of the diagnosis of detrusor overactivity in urodynamic units in Spain. Actas Urologicas Espanolas, 36(1), 21–28 (2012)Google Scholar
  25. Robson, W.L.M.: Evaluation and management of enuresis. N. Engl. J. Med. 360(14), 1429–1436 (2009)Google Scholar
  26. Schlomer, B., Rodriquez, E., Weiss, D., Cropp, H.: Parental beliefs about nocturnal enuresis causes, treatments, and the need to seek professional medical care. J. Pediatr. Urol. (2013, In Press)Google Scholar
  27. Shin, Y., Ghosh, J.: The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation. In: IEEE Int. Conf. Neural Computing, pp. 13–18 (1991)Google Scholar
  28. Thibodeau, B.A., Metcalfe, P., Koop, P., Moore, K.: Urinary incontinence and quality of life in children. Pediatr. Urol. 9(1), 78–83 (2013)CrossRefGoogle Scholar
  29. Vande Walle, J., Rittig, S., Bauer, S., Eggert, P., Marshall-Kehrel, D., Tekgul, S.: Practical consensus guidelines for the management of enuresis. Eur. J. Pediatr. 171(6), 971–983 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paul Fergus
    • 1
  • Abir Hussain
    • 1
  • Dhiya Al-Jumeily
    • 1
  • Naeem Radi
    • 2
  1. 1.Liverpool John Moores UniversityLiverpoolUK
  2. 2.Al-Khawarizmi International CollegeAbu DhabiUAE

Personalised recommendations